Plasma and Fusion Research

Volume 3, S1059 (2008)

Regular Articles


Neoclassical Viscosities in NCSX and QPS with Few Toroidal Periods and Low Aspect Ratios
Shin NISHIMURA, David R. MIKKELSEN1), Donald A. SPONG2), Steven P. HIRSHMAN2), Long-Poe KU1), Henry E. MYNICK1) and Michael C. ZARNSTORFF1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
1)
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA
2)
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169, USA
(Received 16 November 2007 / Accepted 7 February 2008 / Published 5 August 2008)

Abstract

Previously reported benchmarking examples of the analytical formulae of neoclassical viscosities were presented implicitly assuming applications in a future integrated simulation system of the Large Helical Device (LHD). Therefore, the assumed toroidal period numbers were mainly N = 10. However, in this type of calculation, an implicit (or sometimes explicit) assumption of ι/N ≪ 1 is sometimes included. This assumption is included not only in simplified bounce-averaged drift kinetic equations for ripple diffusions, but also in the equation before the averaging for non-bounce-averaged effects determining neoclassical parallel viscosity and banana-plateau diffusions. For clarifying the applicability of the analytical methods for configurations with extremely low toroidal period numbers (required for low aspect ratios), we show recent benchmarking examples in the National Compact Stellarator Experiment (NCSX) with N = 3 and the Quasi-Poloidal Stellarator (QPS) with N = 2.


Keywords

neoclassical transport, neoclassical viscosity, moment equation approach, drift kinetic equation, nonsymmetric toroidal plasma, low aspect ratio stellarator

DOI: 10.1585/pfr.3.S1059


References

  • [1] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).
  • [2] K.C. Shaing and J.D. Callen, Phys. Fluids 26, 3315 (1983).
  • [3] K.C. Shaing, E.C. Crume, Jr. et al., Phys. Fluids B1, 148(1989).
  • [4] K.C. Shaing, B.A. Carreras et al., Phys. Fluids B1, 1663(1989).
  • [5] N. Nakajima and M. Okamoto, J. Phys. Soc. Jpn. 61, 833 (1992).
  • [6] N. Nakajima, M. Okamoto and M. Fujiwara, J. Plasma Fusion Res. 68, 46 (1992).
  • [7] H. Sugama and W. Horton, Phys. Plasmas 3, 304 (1996).
  • [8] H. Sugama and S. Nishimura, Phys. Plasmas 9, 4637 (2002).
  • [9] D.J. Strickler, S.P. Hirshman, D.A. Spong et al., Fusion Sci. Technol. 45, 15 (2004).
  • [10] D.A. Spong, Phys. Plasmas 12, 056114 (2005).
  • [11] W.I. van Rij and S.P. Hirshman, Phys. Fluids B1, 563 (1989).
  • [12] Y. Nakamura, M. Yokoyama, N. Nakajima et al., Fusion Sci. Technol. 50, 457 (2006).
  • [13] D.R. Mikkelsen, H. Maassberg, M.C. Zarnstorff et al., Fusion Sci. Technol. 51, 166 (2007); G.H. Neilson, J.F. Lyon, M.C. Zarnstorff et al., in 16th International Stellarator Workshop Oct.15-19, 2007, Toki, Japan O-13.
  • [14] D.A. Spong, S.P. Hirshman et al., Nucl. Fusion 45, 918 (2005); J.F. Lyon, B.E. Nelson, J.H. Harris et al., in 16th International Stellarator Workshop Oct.15-19, 2007, Toki, Japan P2-095.
  • [15] W. Zhu, S.A. Sabbagh et al., Phys. Rev. Lett. 96, 22002 (2006).
  • [16] W.A. Houlberg, K.C. Shaing, S.P. Hirshman and M.C. Zarnstorff, Phys. Plasmas 4, 3230 (1997).
  • [17] S. Nishimura, H. Sugama and Y. Nakamura, Fusion Sci. Technol. 51, 61 (2007).
  • [18] K.C. Shaing and J.D. Callen, Phys. Fluids 25, 1012 (1982).
  • [19] H.E. Mynick, Phys. Fluids 26, 1008 (1983).
  • [20] J. Todoroki, J. Phys. Soc. Jpn. 8, 2758 (1990).
  • [21] K.C. Shaing and S.A. Hokin, Phys. Fluids 26, 2136 (1983).
  • [22] V.V. Nemov, S.V. Kasilov, W. Kernbichler and M.F. Heyn, Phys. Plasmas 6, 4622 (1999).
  • [23] S. Okamura, K. Matsuoka et al., Nucl. Fusion 44, 575 (2004).
  • [24] E.C. Crume, Jr., K.C. Shaing, S.P. Hirshman and W.I. van Rij, Phys. Fluids 31, 11 (1988).

This paper may be cited as follows:

Shin NISHIMURA, David R. MIKKELSEN, Donald A. SPONG, Steven P. HIRSHMAN, Long-Poe KU, Henry E. MYNICK and Michael C. ZARNSTORFF, Plasma Fusion Res. 3, S1059 (2008).