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Previously reported benchmarking examples of the analytical formulae of neoclassical viscosities were pre-
sented implicitly assuming applications in a future integrated simulation system of the Large Helical Device
(LHD). Therefore, the assumed toroidal period numbers were mainly N = 10. However, in this type of cal-
culation, an implicit (or sometimes explicit) assumption of ι/N � 1 is sometimes included. This assumption
is included not only in simplified bounce-averaged drift kinetic equations for ripple diffusions, but also in the
equation before the averaging for non-bounce-averaged effects determining neoclassical parallel viscosity and
banana-plateau diffusions. For clarifying the applicability of the analytical methods for configurations with ex-
tremely low toroidal period numbers (required for low aspect ratios), we show recent benchmarking examples in
the National Compact Stellarator Experiment (NCSX) with N = 3 and the Quasi-Poloidal Stellarator (QPS) with
N = 2.
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1. Inroduction
The moment equation approach for neoclassical trans-

port [1,2] is a powerful method to treat problems in which
the field particle portion in the linearized collision term is
essentially important. In calculations of the so-called rip-
ple diffusions and their ambipolar condition in collisionless
regimes, this portion is not that important. However, the
covering area of the neoclassical theory includes various
collisionality regimes and also plasma flows. In calculation
of the flows, the field particle portion is indispensable in
general collisionality regimes, and thus the moment equa-
tion approach for non-symmetric toroidal plasmas was de-
veloped mainly for neoclassical parallel flows and the as-
sociated parallel viscosity [3–6]. Although Sugama and
Horton [7] showed that a consistent frame work including
both flows and radial diffusions (in other words, not only
the parallel viscosity but also poloidal and toroidal viscosi-
ties) can be constructed in this line of moment approach,
methods for calculating all the required viscosity coeffi-
cients in general collisionality regimes in general toroidal
configurations had not been shown. Motivated by design
activities of advanced stellarators, a method for obtaining
the full neoclassical viscosity coefficients was developed
in Ref. [8]. It was shown there that three mono-energetic
viscosity coefficients M∗(parallel viscosity against flows),
N∗(driving force for bootstrap currents), and L∗(radial dif-
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fusion) are required to describe the full neoclassical char-
acteristics of general non-symmetric toroidal configura-
tions. Since existing numerical methods such as vari-
ational and Monte Carlo methods for the drift kinetic
equation described in the 3-D phase space (poloidal an-
gle θ, toroidal angle ζ, pitch angle ξ) could be applica-
ble [8], the new theory was applied to various types of
advanced helical/stellarator configurations [9, 10]. How-
ever, this step of the development of the moment approach
was still in the “basic frame work.” Although there were
many alternative methods for obtaining L∗ in the colli-
sionless limit (aforementioned ripple diffusions), the other
viscosity coefficients could be obtained only by the Drift
Kinetic Equation Solver (DKES) code [8–11]. Similar to
the MHD equilibrium code, the neoclassical theory should
also be a practically usable tool. Faster and easier esti-
mation methods for the neoclassical quantities are desir-
able in integrated simulation systems using iterative cal-
culations of the equilibrium and transport [12], configura-
tion optimizations [9], and experimental studies investigat-
ing dependences on configurations. Since the viscosities
(or resulting neoclassical transport coefficients) are direct
consequences of guiding center drift motions, evaluating
them is important in understanding the characteristics of
the designed magnetic configurations [9, 10, 13, 14]. Even
in tokamak experiments, neoclassical toroidal viscosity ef-
fects due to breaking the axisymmetry have recently been
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studied [15], and thus the framework of the moment ap-
proach for non-symmetric configurations and the methods
for calculating the viscosity coefficients are now required
for all studies of toroidal plasma confinements. In the-
ories of axisymmetric tokamaks, simple analytical meth-
ods based on asymptotic expansions of the drift kinetic
equations and connections of their results are commonly
used [1, 16]. Since this approach using analytical methods
will be required in future integrated simulation systems for
the Large Helical Device (LHD) [12], we had previously
performed derivations and benchmark tests of the analyti-
cal formulae for the three mono-energetic coefficients [17].

However, the previous benchmarking examples were
made implicitly assuming applications in the LHD (a he-
lical heliotron with major and minor radii of R0 = 3.9 m
and a = 0.6 m, respectively, and magnetic field strength of
B0 ≤ 3 T). Therefore, the toroidal period numbers assumed
there were mainly N = 10, and the assumed B(Boozer)

mn [B =
ΣBmncos(mθ − nNζ)] spectra did not include n � 0, 1. Al-
though the theory treating the non-bounce-averaged guid-
ing center motion [3,4] is applicable basically for arbitrary
Bmn spectra, arbitrary aspect ratios, and arbitrary rotational
transform per toroidal period ι/N [17], the benchmarking
examples for cases with n � 0, 1, lower aspect ratios,
and larger ι/N had not been reported. A more important
open issue is the ripple-trapped/untrapped boundary layer.
Although there are many alternative calculating methods
for the bounce-averaged motion of the ripple-trapped par-
ticles, the boundary layer causes coupling effects between
the bounce-averaged motion of ripple-trapped particles and
the non-bounce-averaged motion of untrapped particles
(collisional detrapping/entrapping). In Ref. [17], a previ-
ous boundary layer theory by Shaing and Callen for rip-
pled tokamaks [18] was applied with an extension to multi-
helicity stellarators. As investigated also in Ref. [17],
one effect of this coupling is to make N∗ (or G(BS ) ≡
−〈B2〉N∗/M∗) in the 1/ν regime (Es/v ≈ 0) different from
the values given by a theory in Refs. [3, 4], which is cor-
rect in the collisionless detrapping ν regime (Es/v � 0,
ν/v → 0). However, we did not show any benchmark-
ing examples for the 1/ν1/2 diffusion, which is another
important effect discussed in Ref. [18]. Even for N∗ in
the 1/ν regime, the numerical examples for more general
cases had not been shown. For investigating these effects
in configurations including Bmn of n � 0, 1 and with ex-
tremely low toroidal period numbers (required for low as-
pect ratios) resulting in larger ι/N, we show recent calcula-
tion examples in the National Compact Stellarator Exper-
iment (NCSX) [10, 13] and the Quasi-Poloidal Stellarator
(QPS) [9,10, 14] in this paper.

2. Magnetic Fields in NCSX and QPS
The NCSX is a quasi-axisymmetric (QA) toroidal sys-

tem with N = 3, R0 = 1.4 m, a = 0.32 m, and B0 ≤ 2 T. Fig-
ure 1 (a) shows an example of the magnetic field strength

Fig. 1 Magnetic field strengths B on field lines (as functions
of the poloidal angle θB in the Boozer coordinates)
on flux surfaces with the normalized toroidal flux of
(ψ/ψedge)1/2 � 0.5 in (a) NCSX and (b) QPS.

on the flux surface in a standard configuration (NCSX-
m50) with a finite beta of β = 4% and a finite toroidal cur-
rent of Ip = 178 kA. The minor radial position in the figure
is that with normalized toroidal flux of (ψ/ψedge)1/2 = 0.51
(corresponding to r � 0.165 m). Here the notations for the
flux surface coordinates (mainly the Boozer coordinates) in
Refs. [8,17] are used, and thus the radial derivatives of the
poloidal and toroidal magnetic fluxes are χ′ = 0.1178 T ·m
and ψ′ = 0.2513 T ·m, respectively, and covariant poloidal
and toroidal components of the magnetic field are Bθ =

0.0036 T ·m and Bζ = 2.3210 T ·m, respectively, on this
flux surface. In the numerical examples shown here, we
use the flux surface averaged minor radius r as the label of
the surfaces s, and thus the radial derivatives are denoted
by ’ ≡ d/dr. In these calculations in NCSX, the B(Boozer)

mn in
a range of 0 ≤ m ≤ 16 and |n| ≤ 11 are used.

The QPS is a quasi-poloidal torus with N = 2, R0 =

1 m, a = 0.3 m, and B0 ≤ 1 T. As shown in Fig. 1 (b),
this configuration is designed based on a concept contrast-
ing with QA configurations that reduce the fraction of the
ripple-trapped particles. Instead of reducing the fraction,
the radial drift of the trapped particle [19] is reduced in
this configuration. The parameters of the flux surface in
Fig. 1 (b) are (ψ/ψedge)1/2 = 0.49 (corresponding to r �
0.14 m), χ′ = 0.0275 T ·m, ψ′ = 0.1423 T ·m, Bθ = 0,
and Bζ = 1.1403 T ·m. In the calculation examples for the
QPS in this paper, the B(Boozer)

mn ranges are 0 ≤ m ≤ 20
and |n| ≤ 20.

We shall consider here a modeling method for these
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magnetic fields to estimate analytically the boundary layer
effects mentioned in a previous section. As described in
Ref. [18], the boundary layer structure is determined by
a drift kinetic equation (V// − CPAS

a ) fa1 = 0, where V// ≡
v//b · ∇(µ=const) is the linearized orbit propagator, and CPAS

a
is the pitch-angle-scattering operator with the collision fre-
quency of νa

D [8]. Since V// fa1 � 0 for the non-trivial
solution of this equation, the existing bounce- or ripple-
averaging methods assuming V// fa1 = 0 are not appropriate
for this analysis. Therefore, we use the bounce- or ripple-
averaging methods to obtain ∂ fa1/∂µ in the ripple-trapped
pitch-angle range, which gives the boundary condition for
the boundary layer analysis [18], together with the analyti-
cal solution for the boundary layer as complimentary meth-
ods. For this analytical solution, a model expression of the
magnetic field strength B/B0 = 1 + εT(θ) + εH(θ) cos{Lθ −
Nζ + γ(θ)} is required. Hereafter, the use of the Boozer co-
ordinates (s, θB, ζB) [8] is assumed, though we do not write
explicitly the subscript “B” indicating “Boozer,” since the
following analytical approximations on the ripple trapped
particles and the boundary layer structure implicitly as-
sume that γ(θ) is a slowly varying function. This char-
acteristic of γ(θ) is not generally satisfied in the Hamada
coordinates (s, θH, ζH). Although a well-known method
to obtain this B expression is to truncate Bmn with n �
0, 1, this truncation is obviously inappropriate for gen-
eral ripple-trapping B structures such as that in the case
in Fig. 1 (b). For trapped particle dynamics and the bound-
ary layer structure, the ripple-well depth is more essential
than the detailed ripple-well structure. Therefore, we use
εH(θ) = {Bmax(θ) − Bmin(θ)}/(2B0) for each poloidal angle
θ to define εH(θ). This is a truncation of the Fourier series
used by Todoroki [20], who expanded not the amplitude
but the phase of B/B0 − 1 − εT(θ). Similarly, 1 + εT(θ) is
given by 1 + εT(θ) = {Bmax(θ) + Bmin(θ)}/(2B0).

In Fig. 1 (a), we can see that the residual ripple-well
structure is distorted, or sometimes eliminated at θ ≈ ±π/2
by finite rotational transform per toroidal period (χ′/ψ′)/N
in the cases with small εH. For such situations, the effective
ripple-well depth δeff and length correction α∗ were intro-
duced in the theory for rippled tokamaks [18]. By extend-
ing this method to more general toroidal configurations, we
shall define

δeff = εH

√
1 − α∗2

−1
2

(
∂εT

∂θ
+
∂εH

∂θ

√
1 − α∗2

)
π − 2 sin−1 α∗

Nψ′/χ′ − L − ∂γ/∂θ

and

α∗(θ) =
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}2
. (1)

The error of a well-known Shaing-Hokin formula [21] for
the 1/ν ripple diffusions in εH→ 0 limits (e.g., εH ≤ 0.01),

which was pointed out in Ref. [8], is strongly reduced by
introducing this expression. Using these notations, an ex-
pression for the 1/ν1/2 diffusion coefficient in Ref. [18],
which is a contribution of ripple-trapped pitch-angle range
0 ≤ κ2 ≤ 1 for κ2 ≡ {w−µB0(1+εT−δeff)}/(2µB0δeff), can be
extended to a form including more general non-symmetric
configurations as
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Here, for the aforementioned distribution function in
0 ≤ κ2 ≤ 1 as the boundary condition, an analytical so-
lution by Shaing and Hokin [21],

∂G(1/ν)
Xa
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=

cB0

eaν
a
Dψ
′

[(
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+

1
3

√
1 − α∗2 ∂εH
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�
cB0

eaν
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′

(
∂εT
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− 2
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)
(at κ2 = 0.5),

(3)

(K(κ), E(κ): complete elliptic integrals of the first and sec-
ond kinds), which was also applied in Ref. [17] to derive
Eq. (14), is used to consider analytically the dependence
on the magnetic configurations, although numerical inte-
gral methods [22] also may be applicable for this purpose.
From this form of L∗(−1/2) ∝ δ3/4

eff N−1/2, we can understand
that this component of the diffusions can dominate over the
1/ν diffusion of L∗(−1) ∝ δ3/2

eff N0 [21] only in configurations
with small ripple amplitude δeff and small toroidal period
numbers N, and therefore it appears in QA configurations
rather than the rippled tokamaks considered in Ref. [18]. In
fact, previous numerical results in CHS-qa [23] with N = 2
showed a clear 1/ν1/2 dependence of L∗ in a wide range of
collisionality (ν/v). In the next section, we show results in
NCSX including the analytical estimation of this effect by
Eq. (2). Because of this weak dependence on δeff, the ana-
lytical estimation of L∗(−1/2) is still useful even in configu-
rations where numerical integral methods [22] are required
for L∗(−1). Note that the derivatives ∂/∂θ in Eq. (1) must be
low-pass-filtered with the cut-off poloidal Fourier mode of
Nψ′/χ′−L, and that in Eqs. (2) and (3) (and also in Eq. (14)
in Ref. [17]) must be also filtered with the cut-off mode of
(Nψ′/χ′ −L)π/〈π−2 sin−1 α∗〉 in the cases with larger rota-
tional transform per toroidal period (χ′/ψ′)/N. Since these
derivatives appearing in the analytical solution Eq. (3) ex-
presses the bounce-averaged drift of the ripple-trapped
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particles, contributions of the higher Fourier modes in
εT(θ) and εH(θ) vanish in the averaging over the bounce
period.

3. Numerical Examples
Figures 2 (a) and (b) show the mono-energetic viscos-

ity coefficients M∗ and N∗ in the NCSX obtained by the an-
alytical formulas [17] and DKES [11]. Following Refs. [8,
17], here we show G(BS) instead of N∗, and the outputs of
the DKES D∗11, D∗13, and D∗33 are converted to M∗, L∗, and
G(BS) ≡ −〈B2〉N∗/M∗ by Eqs. (54)-(56) in Ref. [8]. The
mono-energetic coefficient L∗ (Es/v ≈ 0) is analytically
expressed as the sum of three components: (1) L∗(−1) given
by appropriate bounce-averaging codes with field line in-
tegral methods, (2) L∗(−1/2) given in Sec. 2, and (3) contri-
butions of non-bounce-averaged drifts given by Eq. (16) in
Ref. [17] (L∗(banana-plateau)). We used here the NEO code [22]

Fig. 2 Mono-energetic viscosity coefficients in the NCSX given
by the analytical methods (solid curves) and by the nu-
merical method in the 3-D phase space (DKES) (open
symbols). (a) the parallel viscosity M∗, (b) the geomet-
rical factor G(BS) ≡ −〈B2〉N∗/M∗, (c) components of the
diagonal diffusion L∗.

for the L∗(−1) in the NCSX, and Figure 2 (c) shows these
components L∗(−1), L∗(−1) + L∗(−1/2), L∗(banana-plateau), and the
DKES results. The sum L∗(−1) + L∗(−1/2) approximately pre-
dicts a deviation of the DKES from a pure ∝ 1/ν scaling
given by the bounce-averaging codes at ν/v < 10−3 m−1. In
these figures, we also show the dependences of the DKES
results on the E × B drift parameter Es/v. The parallel
viscosity coefficient M∗ is insensitive to the E × B drift
effect in general toroidal configurations [17], and there-
fore, Fig. 2 (a) shows only the DKES results with Es/v =

0. N∗ in NCSX is also insensitive to Es/v even in the range
of Es/v≤ 3× 10−3 T, since the 1/ν diffusion of the ripple-
trapped particles accompanying the boundary layer correc-
tion N∗(boundary) in Eq. (14) in Ref. [17] is strongly reduced
in this configuration. However, the dependence of the term
L∗(−1)+L∗(−1/2) in this Es/v range is not negligible. Although
appropriate ripple-averaging methods will be used to cal-
culate this E × B drift effect on the L∗(−1)+L∗(−1/2) term in the
integrated simulation system for the LHD [12], alternative
calculation methods applicable for the NCSX with the fi-
nite radial electric field is still remaining as a future theme.
This problem is discussed in the next section. In spite of
this reduction of L∗(−1) and accompanied N∗(boundary), we can
see another boundary layer effect in Fig. 2 (b). N∗ given
by the DKES transiently becomes larger at ν/v ∼ 10−3 m−1

compared with the analytical formula. This transient in-
crease is peculiar to QA configurations including the CHS-
qa [23], where the 1/ν1/2 component becomes comparable
or dominates over the 1/ν component in the radial diffu-
sion. Although this effect in the 1/ν1/2 regime cannot be
calculated by a method in Ref. [17] assuming a collision-
less limit of the 1/ν regime (the previous formula gives
very small values for the QA configurations, and thus is
not included in Fig. 2 (b)), the transient increase, which is
about 30 % at most, will not be so important in the energy
integrated coefficients.

Similarly, results in the QPS are shown in Fig. 3. In
Fig. 3 (c), the 1/ν diffusion coefficient L∗(−1) given by the
Shaing-Hokin formula [21], including minor modifications
of the B expression in Sec. 2, is shown to validate the fol-
lowing discussions on the boundary layer correction, based
on Eq. (3). Even for L∗(−1) ∝ δ3/2

eff , the Shaing-Hokin theory
Eq. (3) still retains an accuracy of factor 2, in spite of the
complex ripple-well structure in Fig. 1 (b). Therefore, we
can investigate characteristics of the boundary layer cor-
rection on the parallel viscosity N∗(boundary) with a weaker
dependence on δeff and εH by the analytical method apply-
ing Eq. (3). As confirmed in Ref. [17], we have to interpret
a previous “1/ν regime” formula for the parallel viscos-
ity derived by Shaing et al. [3, 4] and the N∗ connection
formulae including it (red solid curve in Fig. 3 (b)) as ex-
pressions for strong Es/v limit (i.e., the ν regime or the
ν1/2 regime discussed later) in configurations with large
dependences of L∗ on Es/v. The correct 1/ν regime
(Es/v ≈ 0) value is given by adding a boundary layer cor-
rection term N∗(boundary), which was neglected in Refs. [3,4].
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Fig. 3 Mono-energetic viscosity coefficients in the QPS given
by the analytical methods (solid curves) and by the DKES
(lines with symbols). (a) the parallel viscosity M∗, (b) the
geometrical factor G(BS) ≡ −〈B2〉N∗/M∗, (c) components
of the diagonal diffusion L∗.

Here, note that the boundary layer theory in Ref. [18] and
Eq. (14) in Ref. [17] as its application assumed that the
poloidal angle θ = θM giving maximum value of the mag-
netic field (B = BM), or its envelope Bo {1+ εT(θ)+ εH(θ)}
situates θM = ±π. We have to extend them to cases
with π/2 < |θM| < π such as Fig. 1 (b) with θM =

± 2.4 rad, since the boundary condition at the reflection
point v// = 0 in Ref. [18] is inverted for the region of ∂(εT+

εH)/∂θ < 0, and resultant l = 1 moment at κ2 ≈ 1 [17]
is also inverted. Because of a small fraction of toroidally
trapped particles compared with a large fraction of ripple-
trapped particles in the QPS (i.e., ∂(εT + εH)/∂θ � εH),
another minor modification to Ref. [17] for the QPS is re-
placing

[
∂G(1/ν)

Xa /∂µ
]
κ2=0.5

by
[
∂G(1/ν)

Xa /∂µ
]
κ2=1.0

. The exis-
tence of the collisional perturbation function component
in the toroidally trapped pitch-angle-range of w/BM ≤ µ <
w/{B0(1+εT+δeff)}with axisymmetric Fourier mode n = 0,
which remains even in the 1/ν regime, is restricted in very

narrow µ range, and thus tends to be determined by the
bounce-averaged part only in µ ≈ w/{B0(1+ εT + δeff)}. By
including these modifications, N∗(boundary) in the QPS con-
figuration is estimated by

N∗(boundary) = −
12
π3

νa
D

v

〈
B2

〉
χ′ψ′ fc

V ′

4π2

×
[∫ θM

0
dθ(2δeff)1/2(π − 2 sin−1 α∗)θ

(
∂εT

∂θ
− 1

3

√
1 − α∗2 ∂εH

∂θ

)

−
∫ π

θM

dθ(2δeff)1/2(π − 2 sin−1 α∗)θ
(
∂εT

∂θ
− 1

3

√
1 − α∗2 ∂εH

∂θ

)]
.

(4)

Although more general discussions about the region of
∂(εT + εH)/∂θ ≤ 0 in 0 < θ < π are complicated [17]
and will be discussed elsewhere, this region is small in
practically important configurations with well-performed
drift optimizations [19], and thus these complicated discus-
sions are not important. In Fig. 3 (b), we showed the 1/ν
regime asymptotic value of N∗ given by N∗(sym)+N∗(asym)+

N∗(boundary) [17] with Eq. (4). It approximates the numerical
result for a weak radial electric range of Es/v < 1× 10−4 T
by the DKES. Therefore the dependence of the coefficient
N∗ (or D13) on the radial electric field, which was com-
monly found in non-axisymmetric toroidal configurations,
can be interpreted as a suppression of the ∝ 1/ν compo-
nent of the perturbation Eq. (3) by the E × B drift. In Es/v

ranges without the toroidal resonance [3] (one reason for
which we restrict here this range to be Es/v ≤ 3× 10−3 T),
the E × B drift effect on the ripple-untrapped particles in
κ2 > 1 is not important because of V// fa1 � 0.

Nevertheless, we can see in Fig. 3 (b) another prob-
lem, which is peculiar to configurations with extremely
small toroidal period numbers. The DKES result with
Es/v = 0 begins to diverge to a larger value without con-
verging to an asymptotic value in ν/v < 10−4 m−1. This
behavior of N∗ (or D13) in extremely collisionless limits
with weak radial electric fields (ν/v, Es/v → 0) often ap-
pears in general configurations (analogous behavior can be
seen also at ν/v ≤ 10−6 m−1 in Fig. 2) because of a singu-
larity of ∝ (χ′m−ψ′Nn)−1 in N∗(asym) [3,4,17]. Sometimes
it appears even in shorter mean free path range in config-
urations with small N. One reason for a deviation of the
connection formula (red solid curve) from the DKES re-
sult with Es/v = 1× 10−3 T, 3× 10−3 T and ν/v < 10−4 m−1

of about 30 % is that the analytical formula includes terms
with χ′m − ψ′Nn ≈ 0 in spite of a fact that these terms are
actually suppressed by finite E × B drifts. Even in cases
with Es/v ≈ 0, these terms will be suppressed by higher
order magnetic drifts and collision effects; therefore, ac-
tually, the Fourier series of N∗(asym) must be appropriately
truncated, or suppression of these resonant terms have to
be included in the series. It should also be noted regard-
ing Fig. 3 (c) that the “analytical” L∗ is given by a formula
in Sec.V in Ref. [17] neglecting the boundary layer effects
on the ripple-untrapped pitch-angle range κ2 > 1. How-
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ever, there is a non-negligible effect on L∗ near the colli-
sionality regime boundary between the banana (1/ν) and
plateau regimes. This effect is analogous to the increase
of N∗ in 10−3 m−3 < ν/v < 10−2 m−3 and with Es/v ≈ 0
by N∗(boundary), and makes L∗ in this (ν/v, Es/v) range tran-
siently larger than the present analytical calculation even
when a correct 1/ν diffusion coefficient is added. It is
a contribution of the ripple-untrapped pitch-angle range
κ2 > 1, which differs from that of 0 ≤ κ2 ≤ 1 expressed in
Eq. (2) Because of the dependences of L∗(−1/2) and L∗(−1) on
δeff discussed in the previous section, this equation gives a
too small value in the QPS to explain the L∗ in 10−3 m−3

< ν/v < 10−2 m−3. This approximation of L∗ in config-
urations without quasi-axisymmetry can be improved by
adding an appropriate connection formula for the contribu-
tion of the ripple-untrapped particle distribution L∗(boundary)
[17].

4. Concluding Remarks
The mono-energetic neoclassical viscosity coeffi-

cients are investigated in two low-aspect stellarator con-
figurations with contrasting design concepts. For M∗,
N∗(asym), and (σXa, G(asym)

Xa ) defined in Ref. [17] due to
pure non-bounce-averaged motions [3, 4], the validity of
the analytically approximated formulas [8, 17] has been
confirmed even in the NCSX and the QPS. The formu-
lae for these components are basically applicable for gen-
eral toroidal configurations except that two minor mod-
ifications are required there relating to resonant Fourier
modes in N∗(asym) and the integration constant in the ba-
nana regime expansion of (V// − GPAS

a )G(asym)
Xa = σ

(asym)
Xa as

discussed in Sec. 2 in Ref. [17].
In the two configurations, there are contrasting effects

of the ripple-trapped/untrapped boundary layer at κ2 �

1 causing coupling effects between the bounce-averaged
motion of ripple-trapped particles and the non-bounce-
averaged motion of untrapped particles. The 1/ν1/2 rip-
ple diffusion L∗(−1/2) in the QA configurations is peculiar to
the configurations with small ripples. In the ripple-trapped
pitch angle range 0 ≤ κ2 ≤ 1 in these configurations,
the 1/ν1/2 component of the perturbed distribution func-
tion as an integration constant for Eq. (3) determined by
the boundary layer [18] is not negligible compared with the
small 1/ν component. However, their effects on the ripple-
untrapped pitch-angle range κ2 > 1 are not important. In
contrast to this, the boundary layer affects the range κ2 > 1
in configurations without quasi-axisymmetry, and makes
other boundary layer corrections on the viscosity coeffi-
cients; N∗(boundary) appearing in the 1/ν regime (Es/v ≈ 0)
and also L∗(boundary) near the collisionality regime boundary
between 1/ν and plateau regimes. Although the integration
constant in 0 ≤ κ2 ≤ 1 is negligible compared with a large
1/ν component, boundary layer effects as a driving force of
∝ (δeff)1/2 for the flows in κ2 > 1 is not negligible for the
∝ ν0 component of the distribution function in these con-

figurations without quasi-axisymmetry. Although we ana-
lyzed these effects by applying a simple analytical theory
(Eq. (3)) for the trapped range of 0 ≤ κ2 ≤ 1, the other nu-
merical integral methods [22] and more accurate analytical
methods [20] retaining higher orders of εT, εH, and higher
modes in the “phase” Fourier series of B/B0 − 1 − εT(θ)
will be applicable for this purpose.

We concentrated mainly on cases of Es/v ≈ 0 in this
paper, and thus it also should be noted that remaining fu-
ture themes are in finite radial electric field effects. In
“drift-optimized” configurations (not only NCSX and QPS
but also the inward shifted configurations in the heliotrons,
which is an application of an idea of “σ-optimization”
[19]), the ν1/2 regime ripple diffusion appears in wide
ranges of the collisionality in numerically obtained L∗ for
Es/v � 0. In other words, the ν1/2 regime diffusion is also
reduced by the optimizations compared with the so-called
single helicity model B/B0 = 1 − εt cos θ + εh cos(Lθ −
Nζ) in Refs. [8, 17]. Although a mechanism of this re-
duction is qualitatively an enhanced collisionless entrap-
ping/detrapping, it had not been described quantitatively
by conventional analytical theories. In contrast to many
detailed studies on the dependence of the 1/ν diffusion on
Bmn spectra using various methods [21,22], the dependence
of the ν1/2 diffusion had not been investigated in detail.
One complexity makes the analysis difficult is the fact that
this is another “boundary layer problem” with Es/v � 0,
which differs from the boundary layer problem with Es/v =

0 discussed in this paper. To understand this ν1/2 diffusion
is not only useful for the reduction of the computational
efforts for L∗, but also is important in making the connec-
tion formula of N∗ in 1/ν, ν1/2, and ν regimes. A previous
example of this connection formula in Ref. [17] using an
empirical scaling given by E. C. Crume, Jr., et al. [24], who
neglected this ν1/2 regime term in their expression for L∗,
is not appropriate in these optimized cases. Although we
did not discuss on this problem in this paper, it also is now
under study to complete the analytical calculation of N∗ in
intermediate Es/v ranges in Fig. 3 (b).
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