Plasma and Fusion Research

Volume 3, 009 (2008)

Regular Articles


Modification of Symmetry of Poloidal Eigenmode of Geodesic Acoustic Modes
Makoto SASAKI, Kimitaka ITOH1), Akira EJIRI2) and Yuichi TAKASE2)
Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
(Received 28 April 2007 / Accepted 8 January 2008 / Published 26 February 2008)

Abstract

The poloidal eigenmode of the geodesic acoustic mode (GAM) is analyzed in the case of high aspect ratio circular plasmas, and an analytic representation for poloidal eigenfunction is derived. The m = ±1 and m = ±2 (m is the poloidal number) components of eigenfunction show up-down antisymmetry and up-down symmetry, respectively, in a torus. The mixing of the up-down symmetric and antisymmetric components becomes significant, when the ion gyroradius is large or when electron temperature is higher than ion temperature.


Keywords

zonal flow, geodesic acoustic mode, eigenmode, eigenfrequency, eigenfunction, density oscillation, collisionless damping, gyrokinetic equation

DOI: 10.1585/pfr.3.009


References

  • [1] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] K. Itoh, S.-I. Itoh and A. Fukuyama, Transport and Structual Formation in Plasma (IOP, 1999, Bristol).
  • [3] A. Yosizawa, S.-I. Itoh and K. Itoh, Plasma and Fluids Turbulence (IOP, 2002, Bristol).
  • [4] K. Itoh and S.-I. Itoh, J. Plasma Fusion Res. 81, 972 (2005).
  • [5] K. Hallatschek, Phys. Rev. Lett. 93, 065001 (2004).
  • [6] N. Winsor, J.L. Johnson and J.J. Dawson, Phys. Fluids. 11, 2248 (1968).
  • [7] V.B. Lebedev, P.N. Yushmanov, P.H. Diamond, S.V. Novakovskii and A.I. Smolyakov, Phys. Plasmas 3, 3023 (1996).
  • [8] S.V. Novakovskii, C.S. Liu, R.Z. Sagdeev and M.N. Rosenbluth, Phys. Plasmas 4, 4272 (1997).
  • [9] F.L. Hinton and M.N. Rosenbluth, Plasma Phys. Control. Fusion 41, A653 (1999).
  • [10] H. Sugama and T.-H. Watanabe, Phys. Plasmas 13, 012501 (2006).
  • [11] H. Sugama and T.-H. Watanabe, J. Plasma Phys. 72, 825 (2006).
  • [12] T. Watari, Y. Hamada, A. Fujisawa, K. Toi and K. Itoh, Phys. Plasmas 12, 062304 (2005).
  • [13] S. Satake, K. Okamoto, N. Nakajima, H. Sugama, M. Yokoyama and C.D. Beidler, Nucl. Fusion 45, 1362 (2005).
  • [14] T.S. Halm, Plasma Phys. Control. Fusion 42, A205 (2000).
  • [15] K. Hallatschek, Phys. Rev. Lett. 84, 5145 (2000).
  • [16] K. Hallatschek, Phys. Rev. Lett. 86, 1223 (2001).
  • [17] K. Itoh, K. Hallatshek and S.-I. Itoh, Plasma Phys. Control. Fusion 47, 451 (2005).
  • [18] A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S. Ohsima, S. Nishimura, M. Isobe, C. Suzuki, T. Akiyama, K. Ida, K. Toi, S.-I. Itoh and P.H. Diamond, Phys. Rev. Lett. 93, 165002 (2004).
  • [19] Y. Nagashima, K. Hoshino, A. Ejiri, K. Shinohara, Y. Takase, K. Tsuzuki, K. Uehara, K. Kawashima, H. Ogawa, T. Ida, Y. Kusama and Y. Miura, Phys. Rev. Lett. 95, 095002 (2005).
  • [20] G.D. Conway, B.S. Scott, J. Shirner, M. Reich, A. Kendi and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 47, 1165 (2005).
  • [21] T. Ido, Y. Miura, K. Kamia, Y. Hamada, H. Hoshino, A. Fujisawa, K. Itoh, S.-I. Itoh, A. Nishizawa, H. Ogawa, Y. Kusama and JFT-2M group, Plasma Phys. Control. Fusion 48, S41 (2006).
  • [22] E.A. Frieman and Liu. Chen, Phys. Fluids 25, 502 (1982).
  • [23] R.D. Hazeltine and J.D. Meiss, Plasma Confinement (Addison-Wesley, Redwood City, California, 1992) p.125, p.325.

This paper may be cited as follows:

Makoto SASAKI, Kimitaka ITOH, Akira EJIRI and Yuichi TAKASE, Plasma Fusion Res. 3, 009 (2008).