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The poloidal eigenmode of the geodesic acoustic mode (GAM) is analyzed in the case of high aspect ratio
circular plasmas, and an analytic representation for poloidal eigenfunction is derived. The m = ±1 and m = ±2 (m
is the poloidal number) components of eigenfunction show up-down antisymmetry and up-down symmetry, re-
spectively, in a torus. The mixing of the up-down symmetric and antisymmetric components becomes significant,
when the ion gyroradius is large or when electron temperature is higher than ion temperature.
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1. Introduction
Recently, zonal flows (ZFs) have attracted much at-

tention in plasma research. In particular, ZFs are thought
to suppress anomalous transport in toroidal plasmas, and
they also play an important role in turbulent transport
[1–4]. ZFs are symmetric flows on a magnetic surface (the
toroidal mode number n = 0 and the poloidal mode num-
ber m is very close to zero), which change their sign in
the radial direction and their frequency ω is nearly equal
to zero. In toroidal plasmas, an oscillation symmetric
mode (n = 0,m ≈ 0) exists in addition to a static ZF.
This mode arises from a nonzero divergence of the E × B
drift velocity, because a magnetic field line does not corre-
spond to a geodesic line. This oscillating mode is called a
geodesic acoustic mode (GAM) [2,5,6] , which was found
by Winsor et al., using a fluid model [6]. Subsequently, a
dispersion relation of the GAM was derived [7, 8]. Hinton
et al. analyzed GAM using the gyrokinetic equation, and
discussed the partition ratio of the initial impulse between
GAM and ZFs [9]. GAM oscillations are associated with
a small but finite m = 1 component, therefore they are
damped by ion Landau damping. In addition to these stud-
ies, a strong collisionless damping by a finite orbit width
(finite gyroradius) was studied [10, 11], and the GAM the-
ory was extended to helical systems [10, 12, 13]. The non-
linear excitation mechanism of GAM was also studied. In
Refs. [14, 15], the excitation of GAM by turbulence was
confirmed using direct numerical simulation (DNS). Ac-
cording to a simulation, the excitation of GAM was at-
tributed to the combination of the geometrical curvature
and turbulent shear [16], based on which the condition for
excitation of GAM due to microscopic turbulence was de-
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rived [17]. These studies showed that GAM was excited
by turbulence in configurations with higher safety factors.
In parallel with these theoretical findings, the fluctuations
of density and potential of GAM were recently observed
in experiments, using Heavy Ion Beam Probe and electro-
static probe, and a Doppler reflectometer [18–21]. These
experimental observations require an accurate theoretical
prediction of the temporal-spatial structure of the GAM
eigenfunction.

The spatial structure of the GAM eigenfunction was
studied based on these factors. The gyrokinetic equation
and the quasi neutral condition served as the basic equa-
tions. We considered poloidal modes up to the m = ±2
components. The product of the radial wave number k of
the zonal flow and the ion gyroradius ρ was assumed to be
much smaller than unity. The m = ±1 and m = ±2 compo-
nents have different parity in the up-down symmetry, thus
influencing the symmetry property of the eigenmode. The
up-down symmetric components become large when either
the ion gyroradius is large or when electron temperature is
higher than ion temperature.

The outline of this article is as follows. In Sec. 2, the
model and basic equations are introduced, and the response
function to the fluctuation in potential is derived. In Sec. 3,
the eigenequation is derived, and from it the eigenvalue
[11] (which represents GAM frequency and damping rate)
and the eigenfunction are obtained. Further, the poloidal
structure of GAM potential is derived. The results obtained
were comparable to those of previous studies. A discussion
and summary are provided in Sec. 4.

c© 2008 The Japan Society of Plasma
Science and Nuclear Fusion Research
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2. Model and Basic Equation
2.1 Model

The configuration under study is assumed to be a high
aspect ratio tokamak with a circular cross-section. Devi-
ations from the circular cross-section, such as elongation
and triangularity are not considered in this study. The mag-
netic field can be expressed as

B =
B0

1 + ε cos θ

(
eζ +

ε

q
eθ

)
, (1)

where eζ and eθ are the toroidal and poloidal directions,
respectively, ε represents the inverse aspect ratio and q is
the safety factor.

We derive a dispersion relation under the collisionless
condition. The gyrokinetic equation and the quasi-neutral
condition serve as the basic equations [22,23]:(

∂

∂t
+ v‖b · ∇ + ik⊥ · udr

)
δ fk⊥

= − (
v‖b · ∇ + ik⊥ · udr

) ×
(
F0J0(k⊥ρ)

eφk⊥

T

)
, (2)

∫
dv3J0δ f (i)

k⊥
− n0

(
1 − Γ0(k2ρ2/2)

) eφk⊥

Ti

=
n0

Te

(
φk⊥ − 〈φk⊥〉

)
. (3)

Here, δ f (i)
k⊥ and φk⊥ are the ion distribution function and

electrostatic potential, respectively, and subscript k⊥ rep-
resents the wave vector of zonal flow. The electron den-
sity fluctuation is assumed to be a Boltzmann distribution
for the non-zonal component and zero for the zonal com-
ponent. Te and Ti are the electron, and ion temperatures,
respectively. 〈·〉 represents the magnetic surface average,
F0 is a Maxwell distribution, J0(x) is a zeroth-order Bessel
function, Γ0(k2ρ2/2) = I0(k2ρ2/2) exp(−k2ρ2/2) (where I0

represents a zeroth-order modefied Bessel function), ρi is
the ion gyroradius, and b is a unit vector representing the
magnetic field direction. In Eq. (2), vdr represents the ra-
dial component of toroidal drift due to inhomogeneity in
the toroidal field, which can be expressed as

vdr =
1
Ω

er ·
[
b
(
v2‖ +
μB
m

)
× ∇B

B

]
. (4)

Hereafter, we omit the subscripts in the following cases:
kr = k (kr 	 kθ), and δ fk⊥ → δ f , φk⊥ → φ.

2.2 Response of the distribution function to
fluctuation in potential

Assuming that the particle orbits are circular, the
toroidal drift can be written as

kvdr = − vTqR0
kû sin θ = −s

vT
qR0

(
v̂2‖ +
v̂2⊥
2

)
sin θ. (5)

Here, we introduce the dimensionless variables v̂‖ = v‖/vT,
and v̂⊥ = v⊥/vT. and, define the smallness parameter s =
kvTq
Ω

, which represents the finite orbit width effect.

In order to derive the response of distribution function
to fluctuation in potential, we transform Eq. (2) into

(
∂

∂t
+
v‖

R0q
∂

∂θ

)
eikδ(θ)δ f

= − v‖
R0q

J0(sv̂⊥/q)
∂

∂θ

(
F0eikδ(θ)φ̂

)
(6)

where φ̂ = eφ/Ti. In Eq. (6) ikδ(θ) represents the doppler
shift due to the toroidal drift motion, which can be written
as

kδ(θ) =
kR0q
v‖0

∫
vdr ≈ s

(
v̂‖ +

v̂2⊥
2v̂‖

)
cos θ. (7)

Next, we perform Fourier transformation about time t
and poloidal angle θ as

δ f (θ) =
∞∑

m=−∞
eimθ−iωtδ fm(ω), (8a)

φ̂(θ) =
∞∑

m=−∞
eimθ−iωtφ̂m(ω). (8b)

We then obtain the response relations between the distri-
bution and potential for the poloidal mode number m = 0
from Eq. (2), and for m � 0 from Eq. (6)

iω̂δ f0 =
1
2

J0(sv̂⊥/q)kû(δ f−1 − δ f1 + φ̂−1 − φ̂1), (9a)

δ fm =
∑
l,l′

J0(sv̂⊥/q)F0
v̂‖(m − l)

ω − v̂‖(m − l)
il
′−l

× Jl(kδ1)Jl′(kδ1)φm−l−l′ , (9b)

where ω̂ is the normalized frequency defined as ω̂ =
ωR0q/vT. These equations represent the response of the
distribution function to the potential. The terms such
as {v̂‖(m ± l)/(ω − v̂‖(m ± l))}il′−lJl(kδ1)Jl′ (kδ1) represent
toroidal coupling with the l-th mode. Equation (9b) allows
coupling with infinite terms, however the combination of
higher harmonics results in a higher order of kρ. There-
fore, the infinite summation can be approximated by a fi-
nite summation. We only consider terms up to m = ±1 in
the determination of the real frequency.

In addition to this truncation, the GAM possesses the
following symmetries

δ fm(v‖) = (−1)mδ f−m(−v‖), (10a)

φm = (−1)mφ−m, (10b)

which allow simplification in calculation. In particular,
δ f2, and δ f1, δ f0 can be written explicitly as

iω̂δ f0 = C00φ0 + C01φ1 +C02φ2, (11a)

δ f1 = C10φ0 +C11φ1 +C12φ2, (11b)

δ f2 = C20φ0 +C21φ1 +C22φ2. (11c)

The coefficients Ci j are discussed in Appendix A. Inte-
grating Eq. (11a-c) in the whole velocity space, and using
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Eq. (3), which is a quasi-neutrality condition, we obtain the
following equations:

in0ω̂
s2

2q2
φ̂0 =

∫
C00d3vφ̂0 +

∫
C01d3vφ̂1 +

∫
C02d3vφ̂2,

(12a)

n0
1
τe
φ1 =

∫
C10d3vφ̂0 +

∫
C11d3vφ̂1 +

∫
C22d3vφ̂2,

(12b)

n0
1
τe
φ1 =

∫
C20d3vφ̂0 +

∫
C21d3vφ̂1 +

∫
C22d3vφ̂2.

(12c)

3. Eigenvalue and Eigenfunction
3.1 Eigenequation

In this section, we derive the explicit form of the
eigenequation. Equations (12a-c) can be expressed in ma-
trix form as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
D00 D01 D02

D10 D11 D12

D20 D21 D22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ̂0

φ̂1

φ̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0. (13)

The coefficients in Eq. (13) can be derived as

D00 = iω̂
s2

2q2
n0+n0i

s2

2

[
1
2
ω̂+ω̂3+ω̂4Z(ω̂)+ω̂ (1+ω̂Z(ω̂))

+ i
√
π

s2

8

(
6
ω̂2
+ 3 +

3
4
ω̂2 +

ω̂4

16
+
ω̂6

64

)
e−ω̂

2/4

]
, (14a)

D01 = n0s

[
ω̂2 +

(
1
2
ω̂ + ω̂3

)
Z(ω̂)

+ i
√
π

s2

4

(
3

2ω̂
+

3
4
ω̂ +

3
16
ω̂3 +

ω̂5

32

)
e−ω̂

2/4

]
, (14b)

D02 = i
1
2

ns2

[
3
4
ω̂ +

7
8
ω̂3 +

(
1
2
+ ω̂2 + ω̂4

)
Z(ω̂)

− i
√
π

(
1
2
+
ω̂2

4
+
ω̂4

16

)
e−ω̂

2/4

]
, (14c)

D10 = i
n0s
2

[
ω̂ +

(
ω̂2 +

1
2

)
Z(ω̂)

+ i
√
π

s2

8

(
3
ω̂2
+

3
2

3
8
ω̂2 +

ω̂4

16

)
e−ω̂

2/4

]
, (14d)

D11 = n0
1
τe
+ n0

[
1 + ω̂Z(ω̂)

+ i
√
πs2

(
1
ω̂
+
ω̂

2
+
ω̂3

8

)
e−ω̂

2/4

]
, (14e)

D12 = i
1
2

n0s

[
− ω̂

2
−
(
1
2
+ω̂2

)
Z(ω̂)+i

√
π

(
1
2
+
ω̂2

4

)
e−ω̂

2/4

]
,

(14f)

D20 = −1
8

n0s2

[
3
2
+
ω̂2

4
+ i
√
π

(
1
ω̂
+
ω̂

2
+
ω̂3

8

)
e−ω̂

2/4

]
,

(14g)

D21 = i
1
2

n0s

{
− ω̂

2
−

(
1
2
+ ω̂2

)
Z(ω̂)

+ i
√
π

(
1
2
+
ω̂2

4

)
e−ω̂

2/4

}
, (14h)

D22 = n0
1
τe
+ n0i

√
π

(
1 +
ω̂

2

)
e−ω̂

2/4. (14i)

In order to clarify the s-ordering, we introduce di j, and ei j

as

D0 j = n0s2
(
d0 j + s2e0 j

)
, (15a)

D j0 = n0s2
(
d j0 + s2e j0

)
( j = 0, 2), (15b)

Dii = n0

(
d j0 + s2e j0

)
(i = 1, 2), (15c)

Di j = n0s
(
di j + s2ei j

)
(others). (15d)

Next, we derive the dispersion relation, which is the
determinant of Di j. We include only the real parts of terms
up to O(s2) and the imaginary parts of terms up to O(s4).
The dispersion relation can be written as

Δ = s2

{
Δr + i

(
Δi0 + s2Δi1

) }
= 0, (16)

where Δr determines the real frequency of GAM, Δi0 rep-
resents the fundamental property of GAM in terms of an
imaginary frequency, and Δi1 represents the finite ion gy-
roradius effect in terms of an imaginary frequency of the
s2-order. These terms are written as

Δr0 = Re

∣∣∣∣∣∣ d00 d01

d10 d11

∣∣∣∣∣∣ , (17a)

Δi0 = Im

∣∣∣∣∣∣ d00 d01

d10 d11

∣∣∣∣∣∣ , (17b)

Δi1 = Im

[ ∣∣∣∣∣∣ e00 e01

d10 d11

∣∣∣∣∣∣ +
∣∣∣∣∣∣ d00 d01

e10 e11

∣∣∣∣∣∣
+

{
− d12

d22

∣∣∣∣∣∣ d00 d01

d20 d21

∣∣∣∣∣∣ +
d02

d22

∣∣∣∣∣∣ d10 d11

d20 d21

∣∣∣∣∣∣
}]
.

(17c)

3.2 Eigenvalue
Here, we derive the fundamental eigenvalue by solv-

ing the fundamental dispersion relation

Δr0 + i
(
Δi0 + s2Δi1

)
= 0. (18)

Since, we are considering the GAM frequency, we apply
the ω̂ 	 1 approximation, and expand the plasma disper-
sion function asymptotically. The expanded coefficients
di j, and ei j are discussed in the appendix. The real fre-
quency is determined by substituting Δr0 = 0, and the
imaginary part is assumed to be much smaller than the real
part, i.e., ω̂ 	 γ̂. The fundamental dispersion relation is
approximated up to O(γ̂), where γ̂ can be obtained as

Δr0(ω̂ + γ̂) + i
(
Δi0(ω̂ + γ̂) + s2Δi1(ω̂ + γ̂)

)

≈ Δr0(ω̂)+i

(
∂Δr0(ω̂0)
∂ω̂

γ̂+Δ0(ω̂)+s2Δi1(ω̂)

)
=0 (19)

↔ γ̂ ≈ −Δi0 + s2Δi1

∂Δr0/∂ω̂
. (20)
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Thus, the lowest order estimate for ω can be derived as

ω0 = ω
(0)
G + iγ(0)

G , (21)

ω(0)
G =

√
7
4
+ τe
vT
R0

[
1 + 2

23 + 16τe + 4τ2
e

(7 + 4τe)2q2

]1/2

, (22)

γ(0)
G = −

√
πqτe

vT
2R0

[
1 + 2

23 + 16τe + 4τ2
e

(7 + 4τe)2q2

]−1

×
{ (
ω̂G

4 1
τe
+ ω̂G

2 1
τe
+

3
2
ω̂G

2

)
e−ω̂G

2

+
1
8

s2e−ω̂G
2/4

(
1

64τe
ω̂G

6 +

(
15

128

+
1

8τe
+

1
4q2

)
ω̂G

4 +

(
3

4τe
+

93
256

)
ω̂G

2

)}
. (23)

In the above equations, the terms containing exp
(
−ω̂2

G/4
)

represent the Landau damping effect as pointed out
by Sugama and Watanabe [11, 12]. The coefficient of
exp

(
−ω̂2

G/4
)

in Eq. (23) has been modified, and the leading
term is expressed as 1/8 × 1/64τe.

3.3 Eigenfunction
3.3.1 potential eigenfuction

The poloidal eigenfunction can be derived from the
eigen equation Eq. (13). Here, we transform Eq. (13) into(

D11 D12

D21 D22

) (
φ1/φ0

φ2/φ0

)
= −

(
D10

D20

)
. (24)

From this equation, we can obtain

φ1

φ0
=

D12D20 − D22D10

D11D22 − D12D21
≈ i

1
2

sτe

ω̂
, (25a)

φ2

φ0
=

D21D10 − D11D20

D11D22 − D12D21
≈− s2τe

ω̂2

(
1
4
τe+

7
8

)
. (25b)

Considering the parity of Fourier components (φ−m =

(−1)mφm), the poloidal eigenfunction can be expressed as

φ(θ)
φ0
=

∑
m

eimθφm

≈ 1 − sτe

ω̂G
sin θ − s2τe

ω̂G
2

(
1
2
τe +

7
4

)
cos 2θ. (26)

The value of the GAM potential is nearly constant on the
magnetic surface, and dependence on θ is introduced by a
small but finite ion-gyroradius effect.

The signs of k and u are important when analyzing the
spatial structure of the eigenfunction. The general wave
(composed of traveling and the standing waves), can be ex-
pressed by the superimposing waves that are propagating
toward r > 0 and r < 0. For ω > 0, we need to consider
both positive and negative values of k. In this paper, posi-
tive ω is chosen as a convention. Here, the waves of k > 0
and k < 0 represent traveling waves propagating toward
r > 0 and r < 0, respectively. When the amplitudes of
these components are the same, resulting wave represents
a standing wave.

propagating wave First, we discuss the case of the uni-
directional radially propagating wave. Here we consider
k > 0. In this case, the spatial structure of the eigenfunc-
tion can be written as

φ(r, θ)
φ0

≈
{

1 − sτe

ω̂G
sin θ − s2τe

ω̂G
2

(
1
2
τe +

7
4

)
cos 2θ

}

× cos(kr − ωGt). (27)

As seen in Eq. (27), the structure determined by Eq. (26)
propagates radially. The m = ±1 components has a
sin θ dependency, which shows an up-down antisymmetry
against the midplane of the torus. Its amplitude kρqτe/ω̂G

depends on the sign of the phase of electric field k (when
the direction of increase in E × B drift velocity is posi-
tive along the z-axis, the eigen function increases along the
positive z-axis). The m = ±2 components have a cos 2θ
dependence, which has an up-down symmetry in the torus.
Its amplitude is approximately ∼ k2ρ2q2τ2

e/ω̂
2
G, which is

independent of the sign of k. This component becomes
larger when the ion gyroradius is large or when the elec-
tron temperature is higher than the ion temperature; it is
almost independent of q because the leading term of ω̂G

is proportional to q. In addition, the m = ±2 components
always reduce the amplitude of the m = 0 component at
θ = 0, π and they intensify at θ = ±π/2. The amplitude of
m = ±1 is intensified positively in the bottom of the torus
(θ = 3π/2) by the m = ±2 components. The region sat-
isfying the condition of |φ(θ)| < |φ0| widens. As seen in
Eq. (26), the m = ±1 component can be deduced from the
values of φ(θ) at θ = π/4. Once the m = ±1 component
is determined, the m = ±2 component can be deduced by
comparing the φ(θ) values at θ = 0, π/2.

standing wave We now discuss the case of the standing
wave. The lowest order term, i.e. the m = 0 component,
can be written as{

φ(r, θ)

}
m=0

= φ0

{
exp i (kr − ωGt)

+ exp i (−kr − ωGt − iδ)

}
. (28)

In this case, the spatial structure of the eigenfunction can
be written as

φ(r, θ)
φ0

≈
[{

2 − 2
s2τe

ω̂G
2

(
1
2
τe +

7
4

)
cos 2θ

}

× cos k
(
r − δ

2k

)
cosωG

(
t − δ

2ωG

)

+ 2
sτe

ω̂G
sin θ sin k

(
r − δ

2k

)

× sinωG

(
t − δ

2ωG

) ]
. (29)

Here, δ denotes the phase difference between the waves
with k > 0 and k < 0. This phase difference is not essential,
because we can eliminate it by shifting the origin of time
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and space. Unlike the case of the propagating wave, the
structure does not propagate radially, but oscillates tempo-
rally. As Eq. (29) shows, the time and radial dependences
of m = ±1 and m = ±2 components differ from each other.
Therefore, the poloidal angle that satisfies φ(θ) = φ0 at a
certain radius changes with time. Furthermore, at a cer-
tain time (t = δ/2ωG + nπ, n = 0, 1, 2 . . .), the m = ±1
components disappear, whereas the m = 0,±2 components
remain. In contrast, at time t = δ/2ωG + (n + 1/2)π, the
m = 0,±2 components disappear, and only the m = ±1
components remain. The structure has a radial periodicity
of 2π/k when the time is fixed, and has a time periodicity
of 2π/ωG when the radial position is fixed. Furthermore,
in the case of the general wave, which can be expressed by
superimposing the propagating and the standing waves, the
effect of the m = ±2 components on the m = ±1 compo-
nents vary radially.

3.3.2 density eigenfuction

Because the density eigenfunction is more easily ob-
served, we explain the density fluctuation. The electron
density fluctuation is obtained from Eq. (3), and is ex-
pressed as

ñ(θ)
n0
= φ̂0

{
− sτe

ω̂G
sin θ − s2τe

ω̂G
2

(
1
2
τe +

7
4

)
cos 2θ

}
.

(30)

Radially propagating and standing waves are reconstructed
by choosing an appropriate sign for k.

propagating wave First, we discuss the case of the uni-
directional radially propagating wave. Here we select k as
k > 0. In this case, the density structure of the eigenfunc-
tion can be written as

ñ(r, θ)
n0

= φ̂0

{
− sτe

ω̂G
sin θ − s2τe

ω̂G
2

(
1
2
τe +

7
4

)
cos 2θ

}

× cos(kr − ωGt). (31)

It is found that the θ dependent structure propagates radi-
ally. The leading order of the density fluctuation is approx-
imately kρ, and shows sin θ dependence, which is antisym-
metric in the torus. Similar to the potential eigenfunction,
the m = ±1 components depend on the sign of k, whereas
the m = ±2 components are independent of it. The behav-
ior of density eigenfunction is shown in Fig. 1 for a fixed
the time and radial position (kr−ωGt = 2nπ, n = 0, 1, 2 . . .).
Although the sign of the density eigenfunction changes in
the vertical direction, the up-down antisymmetry is broken.

To show the effect of breaking of antisymmetry, we
analyze the ratio between the top and bottom, (i.e., ñ (3π/2)
and ñ (π/2), in Fig. 2), which is always unity when an-
tisymmetry holds. It is found that ñ (3π/2) /ñ (3π/2) in-
creases when kρ becomes large, which indicates that the
antisymmetry increases. When kρ ∼ 0.1, this antisym-
metry is several tens of percent of the density fluctua-
tion, which can be observed. In addition, we analyze the

Fig. 1 Eigenfunctions for several τe (τe = 0.5, 1, 2), with kρ =
0.1, and q = 3.

Fig. 2 kρ dependence of the asymmetry in density perturbation.
Asymmetry is defined as ñ (3π/2) /ñ (π/2), for q = 3, and
τe = 1.

poloidal angles which the density fluctuation becomes zero
at all times (these points are defined as θ0, and θ1). When
kρ is small, the density fluctuation is nearly antisymmetric,
resulting in zero points of θ0 = 0, and θ1 = π. However, if
kρ becomes larger, the antisymmetry breaks down, there-
fore θ0, and θ1 moves from 0, π to 0 − Δθ, π + Δθ, respec-
tively. The behavior of Δθ is shown in Fig. 3, in which it is
possible to detect the density fluctuation at the midplane.
The density perturbations for the (r, θ) plane are illustrated
in Fig. 4. The boundary for ñ/n = 0 shifts from θ = 0, π as
seen in Fig. 3. This pattern propagates in the r-direction.
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Fig. 3 kρ dependence of the points where the density fluctuation
becomes zero, for q = 3, and τe = 1.

Fig. 4 Spatial structure of density fluctuation in propagating
wave on the (r, θ) plane at ωG(t − t0) = 2nπ, n is an
integer, and t0 = δ/2k. The solid line shows the con-
tour of ñ/nφ0 > 0, the dashed line shows the contour of
ñ/nφ0 < 0, and the dash-dot line shows the contours of
ñ/nφ0 = 0.

standing wave Next, we discuss the case of the standing
wave based on Eq. (28). Here, the spatial structure of the
density eigenfunction can be written as

ñ(r, θ)
n0

= φ̂0

{
2

sτe

ω̂G
sin θ sin k

(
r − δ

2k

)

× sinωG

(
t − δ

2ωG

)
− 2

s2τe

ω̂G
2

(
1
2
τe +

7
4

)

× cos 2θ cos k
(
r− δ

2k

)
cosωG

(
t− δ

2ωG

) }
.

(32)

As seen in this equation, the effect of the m = ±2 compo-
nents on m = ±1 components changes radially, similar to
the potential eigenfunction. Unlike the case of the propa-
gating wave, the region of ñ/nφ̂0 < 0 changes both radially
and temporally, which is shown in Fig. 5. The time origin

Fig. 5 Spatial structures of the density fluctuation in the stand-
ing wave on the (r, θ) plane. (a) at ωG(t− t0) = 2nπ, (b) at
ωG(t − t0) = π/4+ 2nπ, (c) at ωG(t− t0) = π/2+ 2nπ, and
(d) at ωG(t − t0) = 3π/4 + 2nπ. The solid line shows the
contour of ñ/nφ0 > 0, the dashed line shows the contour
of ñ/nφ0 < 0, and the dash-dot line shows the contours of
ñ/nφ0 = 0.

is defined as the time when the m = ±1 components dis-
appear, t = δ/2ωG + 2nπ. This variation in the pattern of
the standing wave is compared to that of the propagating
wave shown in Fig. 4. The θ-dependent structure moves in
the r-direction without changing its shape in the case of the
propagating wave, whereas the pattern itself changes in the
case of the standing wave.

Finally, we comment on the phase difference between
ñ and φ, where we consider only the dominant terms for
simplicity (i.e. the m = 0 component in φ and the m = ±1
components in ñ). It is observed that propagating waves
have peaks at the same radial location (kr − ωGt = 2nπ),
whereas standing waves have peaks that shift radially by
kΔr = π/2.

4. Summary
In this study, the spatial structure of the GAM poloidal

eigenfunction was analzsed. The analytical representations
of the potential and density eigenfunctions were obtained.
The eigenfunction of the m = ±1 components showed the
up-down antisymmetry in the torus, and the m = ±2 com-
ponents showed up-down symmetry in the torus. The mix-
ing of the up-down symmetric and antisymmetric compo-
nents becomes significant, when the ion gyroradius is large
or when the electron temperature is higher than the ion
temperature. The asymmetry defined by −ñ(3π/2)/ñ(π/2)
is approximately several tens of percent of density fluctu-
ation, which can be observed. Cases for both propagating
and standing waves are illustrated. These results will be
useful in future experimental studies of GAM in toroidal
plasmas.
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Appendix A. Coefficients (Ci j)
The coefficients of the response of ion distribution to

fluctuation in potential, from Eq. (11c), are obtained as

C00 = −1
2

kûF0

{
1
2

i(kδ)

(
v̂‖
ω̂ − v̂‖ +

v̂‖
ω̂ + v̂‖

)

+
1
16

i(kδ)3

(
2v̂‖
ω̂ − 2v̂‖

+
2v̂‖
ω̂ + 2v̂‖

) }
, (A.1)

C01 = −1
2

kûF0

{
v̂‖
ω̂ − v̂‖ −

v̂‖
ω̂ + v̂‖

+ 2

+
1
4

(kδ)2

(
2v̂‖
ω̂ − 2v̂‖

− 2v̂‖
ω̂ + 2v̂‖

) }
, (A.2)

C02 = −1
2

kûF0

{
− 1

2
i(kδ)

(
2v̂‖
ω̂ − 2v̂‖

+
2v̂‖
ω̂ + 2v̂‖

− v̂‖
ω̂ − v̂‖ −

v̂‖
ω̂ + v̂‖

)

+
1
16

i(kδ)3

(
3v̂‖
ω̂ − 3v̂‖

+
3v̂‖
ω̂ + 3v̂‖

) }
, (A.3)

C10 = F0

{
i
1
2

(kδ)
v̂‖
ω̂ − v̂‖ + i

1
16

(kδ)3 2v̂‖
ω̂ − 2v̂‖

}
,

(A.4)

C11 = F0

{
v̂‖
ω̂ − v̂‖ +

1
4

(kδ)2 2v̂‖
ω̂ − 2v̂‖

}
, (A.5)

C12 = F0

{
i
1
2

(kδ)

(
v̂‖
ω̂ − v̂‖ −

2v̂‖
ω̂ − 2v̂‖

)

− i
1
16

(kδ)3 3v̂‖
ω̂ − 3v̂‖

}
, (A.6)

C20 = F0

{
− 1

8
(kδ)2 2v̂‖

ω̂ − 2v̂‖

+ (kδ)4

(
1
32

2v̂‖
ω̂ − 2v̂‖

− 1
96

3v̂‖
ω̂ − 3v̂‖

) }
, (A.7)

C21 = F0

{
i
1
2

(kδ)

(
2v̂‖
ω̂ − 2v̂‖

− v̂‖
ω̂ − 2v̂‖

)

+ i(kδ)3

(
1
16

3v̂‖
ω̂ − 3v̂‖

− 1
6

2v̂‖
ω̂ − 2v̂‖

) }
, (A.8)

C22 = F0

{
2v̂‖
ω̂ − 2v̂‖

+ (kδ)2

(
−1

2

2v̂‖
ω̂ − 2v̂‖

+
1
4

3v̂‖
ω̂ − 3v̂‖

) }
. (A.9)

Appendix B. Expansion of di j, and ei j
di j and ei j defined in Eqs. (15a)-(15d) are coefficients

of the response of density fluctuation to fluctuation in po-
tential. These coefficients have Z(ω̂) terms. In the case of
GAM, since ω̂ 	 1 is satisfied, it is possible to expand
Z(ω̂). From this expansion, di j and ei j can be written as

d00 ≈ iω̂
1

2q2
− i

1
2

(
7
4

1
ω̂
+

23
8

1
ω̂3

)

+ i
1
2

i
√
π

(
ω̂4 + ω̂2 +

1
2

)
e−ω̂

2
, (B.1)

d01 ≈ −
(
1 +

1
ω̂2
+

1
ω̂4

)
+ i
√
π

1
2
ω̂e−ω̂

2
, (B.2)

d02 ≈ i
1
2

{
7
4

1
ω̂
+

161
8

1
ω̂3
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√
πe−ω̂

2/4

(
1
2
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1
4
ω̂2 +

1
16
ω̂4

) }
, (B.3)

d10 ≈ i
1
2
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(
1
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√
π

(
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2
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4
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