Plasma and Fusion Research
Volume 20, 2402010 (2025)
Regular Articles
- 1)
- Institute of plasma physics, Chinese Academy of Sciences, Hefei 230031, China
- 2)
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- 3)
- Instituto de Astronomía y Física del Espacio (CONICET-Universidad de Buenos Aires), Buenos Aires 1428, Argentina
- 4)
- University of Science and Technology of China, Hefei 230026, China
- 5)
- Anhui University, Hefei 230601, China
Abstract
To optimize the plasma performance of fusion devices using tungsten plasma-facing components (PFCs), it is crucial to study the transport of tungsten impurities. This work focuses on the observation of line emissions from various charge states of tungsten ions in high-temperature plasmas utilizing Extreme Ultraviolet (EUV) spectrometers. Line emissions from W26+-W32+ ions are observed in the 45-55Å band at electron temperatures below 2.0 keV, while line emissions from W34+-W45+ ions appear in the 55-70Å band at electron temperatures above 3.0 keV. Additionally, radial profiles of W-UTA spectra in plasma with different electron temperature show that as the electron temperature decreases from 5.0 keV to 3.0 keV, the peak position of W26+-W32+ ions move inward from ρ∼0.5 to ρ∼0.2. The line intensity profiles of W42+-W45+ ions accumulate within a narrow region of plasma core, specifically at ρ < 0.4. This study provides essential experimental data to support further research on tungsten impurity transport, control of tungsten content, and the enhancement of plasma performance.
Keywords
EAST tokamak, high temperature plasma, impurity ion, extreme ultraviolet spectroscopy, tungsten spectra
Full Text
References
- [1] J. Roth et al., J. Nucl. Mater. 390-391, 1-9 (2009).
- [2] R. Neu et al., Plasma Phys. Control. Fusion 49, B59 (2007).
- [3] G. Matthews et al., Phys. Scr. T145, 014001 (2011).
- [4] J. Bucalossi et al., Fusion Eng. Des. 89, 907 (2014).
- [5] R. Guirlet et al., Plasma Phys. Control. Fusion 64, 105024 (2022).
- [6] T. Oishi et al., Nucl. Fusion 64, 106011 (2024).
- [7] L. Zhang et al., Nucl. Instrum. Meth. A 916, 169 (2019).
- [8] L. Zhang et al., Rev. Sci. Instrum. 86, 123509 (2015).
- [9] Z. Xu et al., Nucl. Instrum. Meth. A 1010, 165545 (2021).
- [10] Y. Cheng et al., Rev. Sci. Instrum. 93, 123501 (2022).
- [11] Y. Cheng et al., Nucl. Instrum. Meth. A 1057, 168714 (2023).
- [12] A.E. Kramida et al., 2023 National Institute of Standards and Technology (NIST) NIST Atomic Spectra Database (Version5.11).
- [13] H. Zhao et al., Rev. Sci. Instrum. 89, 10H111 (2018).