Plasma and Fusion Research
Volume 20, 2402005 (2025)
Regular Articles
- 1)Department of Quantum Science and Energy Engineering, Tohoku University, Sendai 980-8579, Japan
- 2)National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
- 3)The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
- 4)Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga 816-8580, Japan
- 5)Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- 6)Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-8555, Japan
Abstract
Tungsten spectroscopic studies have attracted much attention, because tungsten will be used as a plasma-facing component in ITER and future DEMO reactors. However, spectral line data of tungsten ions in low to intermediate charge states, such as W8+-W26+, is still lacking. To accumulate spectral line data of W8+-W26+, it is very important to identify the charge state and transition of Unresolved Transition Array (UTA) spectrum, as well as discrete line spectrum. In this study, we investigated electron temperature dependence of a UTA spectrum around 300Å for an advanced understanding of spectral line shape. As a result, the UTA spectrum contains W17+-W27+ and emission line from 5s-5p transition and its satellite line from 5s2-5s5p transition are strongly emitted. It was suggested that the UTA spectrum around 300Å will be useful for diagnostics of ITER edge plasma.
Keywords
Tungsten, EUV spectrum, spectroscopy, large helical device, flexible atomic code
Full Text
References
- [1] K. Amsmussen et al., Nucl. Fusion 38, 967 (1998).
- [2] T. Nakano and The JT-60 Team, J. Nucl. Mater. 415, S327 (2011).
- [3] G.J. van Rooij et al., J. Nucl. Mater. 438, S42 (2013).
- [4] L. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 916, 169 (2019).
- [5] C. Dong et al., Nucl. Fusion 59, 016020 (2019).
- [6] R. Guirlet et al., Plasma Phys. Control. Fusion 64, 105024 (2022).
- [7] B. Zurro et al., Plasma Phys. Control. Fusion 56, 124007 (2014).
- [8] T. Oishi et al., Phys. Scr. 91, 025602 (2016).
- [9] T. Oishi et al., Phys. Scr. 96, 025602 (2021).
- [10] T. Oishi et al., Atoms 9, 69 (2021).
- [11] H.A. Sakaue et al., Phys. Rev. A 92, 012504 (2015).
- [12] W. Li et al., Phys. Rev. A 91, 062501 (2015).
- [13] I. Murakami et al., Nucl. Mater. Energy 26, 100923 (2021).
- [14] A. Kramida et al., http://physics.nist.gov/asd for NIST Atomic Spectra Database (Ver. 5.10).
- [15] M. Mita et al., J. Phys.: Conf. Ser. 875, 012019 (2017).
- [16] Priti et al., Atoms 11, 57 (2023).
- [17] S. Murata et al., X-ray spectrometry 49, 200 (2019).
- [18] Y. Liu et al., J. Appl. Phys. 122, 233301 (2017).
- [19] C. Suzuki et al., J. Phys. B: At. Mol. Opt. Phys. 44, 175004 (2011).
- [20] R. Nishimura et al., submitted to Nucl. Mater. Energy.
- [21] K.J. McCarthy et al., Phys. Scr. 91, 115601 (2016).
- [22] Y. Takeiri et al., Nucl. Fusion 57, 102023 (2017).
- [23] B. Chowdhuri et al., Rev. Sci. Instrum. 78, 1122 (2001).
- [24] R. Nishimura et al., Plasma Fusion Res. 19, 1402022 (2024).
- [25] N. Narihara et al., Rev. Sci. Instrum. 72, 1122 (2001).
- [26] B. Peterson et al., Fusion Sci. Technol. 58, 412 (2010).
- [27] H.P. Summers, The ADAS User Manual version 2.6, http://www.adas.ac.uk (2004).
- [28] M.F. Gu et al., Astrophys. J. 582, 1241 (2003).