Plasma and Fusion Research

Volume 20, 2401014 (2025)

Regular Articles


EUV Spectra from Laser-Produced Tungsten Plasmas
Hayato OHASHI1), Hiromu KAWASAKI2), Yuta SHIMADA2), Shinichi NAMBA3), Gerry O’SULLIVAN4) and Takeshi HIGASHIGUCHI2)
1)
Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-8555, Japan
2)
Department of Electrical and Electronic Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
3)
Department of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
4)
School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
(Received 16 July 2024 / Accepted 23 October 2024 / Published 22 January 2025)

Abstract

We observed the EUV emission spectra from laser-produced tungsten plasmas. The spectral structures were compared by optical thickness due to the critical density difference of 1 × 1021 and 4 × 1021 cm−3 with laser wavelengths of 1064 nm and 532 nm, respectively. We found some spectral structure changes, an increase of emission in 1 - 3 nm region under an optically thick condition while a decrease of a peak near 5 nm for unresolved transition array of 4d - 4f transitions. Some 1.3 - 2.5 nm peaks were attributed to charge states higher than W30+. We showed some dependence of the spectral behavior for the EUV emission.


Keywords

tungsten (W), extreme ultraviolet (EUV), laser-produced plasma, highly charged ion (HCI)

DOI: 10.1585/pfr.20.2401014


References

  • [1] R.A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019).
  • [2] P. Beiersdorfer et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144008 (2010).
  • [3] J. Clemson et al., AIP Conf. Proc. 1525, 78 (2013).
  • [4] K. Asmussen et al., Nucl. Fusion 38, 967 (1998).
  • [5] T. Nakano et al., Nucl. Fusion 49, 115204 (2009).
  • [6] J. Yanagibayashi et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144013 (2010).
  • [7] H.A. Sakaue et al., Phys. Rev. A 92, 012504 (2015).
  • [8] T. Oishi et al., Phys. Scr. 96, 025602 (2021).
  • [9] C.S. Harte et al., J. Phys. B: At. Mol. Opt. Phys. 45, 205002 (2012).
  • [10] E.F. Barte et al., J. Appl. Phys. 123, 183301 (2018).
  • [11] G. Arai et al., Opt. Express 26, 27748 (2018).
  • [12] P. Dunne et al., Appl. Phys. Lett. 76, 34 (2000).
  • [13] T. Higashiguchi et al., Appl. Phys. Lett. 86, 231502 (2005).
  • [14] T.-H. Dinh et al., Rev. Sci. Instrum. 87, 123106 (2016).
  • [15] H. Kawasaki et al., Rev. Sci. Instrum. 91, 086103 (2020).
  • [16] M.F. Gu, Astrophys. J. 582, 1241 (2003).