Plasma and Fusion Research

Volume 20, 2401001 (2025)

Regular Articles


Dynamic Stark Effect on Line Shapes in Laboratory and Fusion Plasma
Ibtissem HANNACHI1,2), Roland STAMM1), Joël ROSATO1) and Yannick MARANDET1)
1)
Aix-Marseille Univ. and CNRS, PIIM, 13397 Marseille, France
2)
University of Batna 1, PRIMALAB, Department of Physics, Batna, Algeria
(Received 29 July 2024 / Accepted 5 September 2024 / Published 22 January 2025)

Abstract

Different forms of the Stark effect can affect the emission of line shapes in a plasma. Alongside the fluctuating microfield created by plasma ions and electrons, one often observes the fingerprints of oscillating electric fields. All these dynamic Stark effects result from random and collective motion of the particles but also from oscillating fields applied from outside the plasma by radiofrequency or laser sources. We here use a computer simulation to accurately capture the complex dynamics affecting the emission of a hydrogen atom in a laboratory or fusion plasma.


Keywords

Stark broadening-periodic electric field-numerical simulation-Zeeman effect-polarization

DOI: 10.1585/pfr.20.2401001


References

  • [1] C. Klepper et al., Phys. Rev. Lett. 110, 215005 (2013).
  • [2] W. Bin et al., Phys. Rev. Lett. 129, 045002 (2022).
  • [3] M. Baranger and B. Mozer, Phys. Rev. 123, 25 (1961).
  • [4] V. Lisitsa, Atoms in plasmas (Springer, Berlin, 1994).
  • [5] E. Oks, Plasma Spectroscopy (Springer, Berlin, 1995).
  • [6] R. Stamm et al., Phys. Rev. A 30, 2039 (1984).
  • [7] I. Hannachi et al., Atoms 12(4), 19 (2024).
  • [8] H.R. Griem et al., Phys. Rev. 116, 4 (1959).
  • [9] E. Stambulchik, High Energy Density Phys. 9(3), 528 (2013).
  • [10] M. Gigosos et al., Phys. Rev. A 31, 3509 (1985).
  • [11] S. Alexiou, Atoms 9, 30 (2021).
  • [12] I. Hannachi et al., Adv. Space Res. 71, 1269 (2023).
  • [13] E. Stambulchik and Y. Maron, J. Quant. Spectrosc. Radiat. Tranfer 99, 730 (2006).
  • [14] P. Cho et al., ApJ 927, 70 (2022).
  • [15] S. Alexiou, Atoms 12, 17 (2024).