Plasma and Fusion Research
Volume 20, 1406032 (2025)
Regular Articles
- 1)
- Nagaoka University of Technology, Nagaoka, Niigata 940-2137, Japan
- 2)
- University of Toyama, Gofuku, Toyama 930-8555, Japan
Abstract
A pulsed power discharge experiment was conducted to investigate the compositional effect on plasma parameters of a mixed gas plasma of argon (Ar) and helium (He) gases as the heavy and light species, respectively. As the plasma parameters, electron temperature, drift velocity, and ion density were estimated for different compositions of Ar and He. Electron temperature and drift velocity were estimated by line-pair and time-of-flight methods, respectively. Ion density was estimated by Faraday cup method. Line-pair method results obtained by Ar lines and He lines at each composition show that Ar and He are in different partial local thermal equilibrium (PLTE) states in the mixed gas. Different relaxation times between different atomic species confirm the deviation of LTE. Similar drift velocity estimated by Ar and He lines separately at each composition shows that the plasma is a homogenous mixture. Drift velocity decreases as the increment of the Ar percentage in the mixture since the average mass of the mixture increases.
Keywords
pulsed power discharge, solar wind, mixed gas plasma, partial local thermal equilibrium, relaxation time of elastic collisions
Full Text
References
- [1] E. Fermi, Phys. Rev. 75, 1169 (1949).
- [2] S. Swordy, Space Sci. Rev. 99, 85 (2001).
- [3] A. Bell, Mon. Not. R. Astron. Soc. 182, 147 (1978).
- [4] K. Schure et al., Space Sci. Rev. 173, 491 (2012).
- [5] R.A. Treumann, Astron. Astrophys. Rev. 17, 409 (2009).
- [6] Y. Ohira, Proceedings of the 7th International Workshop on Very High Energy Particle Astronomy in 2014 (VHEPA2014) 011002 (2017).
- [7] T. Takezaki et al., Phys. Plasmas 23, 062904 (2016).
- [8] L. M. M. De Silva et al., Jpn. J. Appl. Phys. 63, 09SP27 (2024).
- [9] T. Takezaki et al., High Energ. Dens. Phys. 33, 100698 (2019).
- [10] T. Takezaki et al., Phys. Plasmas 28, 102109 (2021).
- [11] Y. Sun et al., Space Weather 20, p.e2022SW003128 (2022), https://doi.org/10.1029/2022SW003128
- [12] C.M. Huntington et al., Nat. Phys. 11, 173 (2015).
- [13] A. Casner et al., High Energ. Dens. Phys. 17, 2 (2015).
- [14] Y. Kuramitsu et al., High Energ. Dens. Phys. 17, 198 (2015).
- [15] Y. Sakawa et al., High Energ. Dens. Phys. 23, 207 (2017).
- [16] N. Khasanah et al., High Energ. Dens. Phys. 23, 15 (2017).
- [17] J.S. Ross et al., Phys. Rev. Lett. 118, 185003 (2017).
- [18] T. Morita et al., J. Phys. Conf. Ser. 244, 042010 (2010).
- [19] T. Oguchi et al., Plasma Fusion Res. 18, 2401049 (2023).
- [20] T. Sasaki et al., In Proceedings of the 12th Asia Pacific Physics Conference (APPC12) 015096 (2014).
- [21] K. Kondo et al., Rev. Sci. Instrum. 77, 036104 (2006).
- [22] G. Han and G. Cho, Appl. Sci. Converg. Technol. 26, 201 (2017).
- [23] S.S. Hodgman et al., Phys. Rev. Lett. 103, 053002 (2009).
- [24] T. Kitamura et al., ISIJ Int. 38, 1165 (1998).
- [25] W. Baumjohann and R.A. Treumann, Basic Space Plasma Physics (World Scientific Publishing Company, 2012).