Plasma and Fusion Research

Volume 20, 1405018 (2025)

Regular Articles


New Approach to Evaluate Joint Delamination Mechanism of Divertor by Finite Element Analysis Applying Cohesive Zone Model (CZM); Parametric Study on the Maximum Traction under Heating
Yuta TOBATA, Motoki NAKAJIMA, Dai HAMAGUCHI, Takashi NOZAWA
National Institutes for Quantum Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan
(Received 9 October 2024 / Accepted 23 December 2024 / Published 28 March 2025)

Abstract

To evaluate the delamination mechanism of the joint interfaces of a plasma-facing component, a new approach using the finite element analysis (FEA) applying the cohesive zone model (CZM) is proposed. The parametric study on the maximum traction τmax, which is one of the principal CZM parameters, was conducted for compensating the lack of material data. Monotonic heat loading was applied to the surface up to 20 MW/m2 in 1 second. The traction-separation law was assumed to be bilinear, which represents the relation between the representative crack stress and its opening displacement used for CZM. In the parametric study, three assumptions of τmax were defined, (1) equal to the weaker bulk strength (Copper), (2) considering temperature dependency, and the average value of the strength ratio of the interface to bulk copper, and (3) considering as well as (2) but the lowest value of the ratio. Results of the parametric study suggest shear stress-governed (mode Ⅱ) delamination without vertical crack propagation in tungsten monoblock. Meanwhile, the joint interface shows compression, which means the interface remains in contact. Therefore, it is suggested that the degradation of cooling capability does not happen during the heating process unless vertical cracks in tungsten do not propagate into the interface.


Keywords

divertor, tungsten-copper joint, FEM, cohesive zone model, delamination, crack propagation

DOI: 10.1585/pfr.20.1405018


References

  • [1] K. Hoshino et al., Plasma Fusion Res. 12, 1405023 (2017).
  • [2] N. Asakura et al., Nucl. Fusion 61, 126057 (2021).
  • [3] G. Pintsuk et al., Fusion Eng. Des. 88, 1858 (2013).
  • [4] S. Nogami et al., Fusion Eng. Des. 120, 49 (2017).
  • [5] M. Fukuda et al., J. Nucl. Mater. 542, 152509 (2020).
  • [6] V.P. Budaev et al., J. Nucl. Mater. 463, 237 (2015).
  • [7] S. Panayotis et al., Fusion Eng. Des. 125, 256 (2017).
  • [8] M. Richou et al., Fusion Eng. Des. 157, 111610 (2020).
  • [9] Y. Wang et al., Nucl. Mater. Energy 39, 101665 (2024).
  • [10] X.-P. Xu and A. Needleman, J. Mech. Phys. Solids 42, 1397 (1994).
  • [11] G. Alfano and M.A. Crisfield, Int. J. Numer. Methods Eng. 50, 1701 (2001).
  • [12] X. Huo et al., Int. J. Mech. Sci. 215, 106921 (2022).
  • [13] M. Ma et al., Heliyon 8, e11037 (2022).
  • [14] J. Teixeira et al., J. Adhes. 94, 951 (2018).
  • [15] Y. Tobata et al., Polym. Compos. 44, 954 (2023).
  • [16] Y. Tobata et al., J. Compos. Mater. 58, 317 (2024).
  • [17] M. Mahler et al., J. Nucl. Mater. 502, 213 (2018).
  • [18] Y. Wang et al., J. Nucl. Mater. 583, 154555 (2023).
  • [19] A. Buch, Pure metals properties (ASM International, Ohio, 1999) p. 16.
  • [20] A. Buch, Pure metals properties (ASM International, Ohio, 1999) p. 34.
  • [21] A.P. Smirjagin et al., Industrial non-ferrous metals and alloys (Metallurgy, Moscow, 1974) p. 29.
  • [22] ASME, Edition 2001 Section II, Part D - Properties, Table TM-3, 674 (2001).
  • [23] ASME, Edition 2001 Section II, Part D - Properties, Subpart 2, Physical Properties Tables, TABLE NF-1, 677 (2001).
  • [24] A.P. Smirjagin et al., Industrial non-ferrous metals and alloys (Metallurgy, Moscow, 1974) p. 31–32.
  • [25] ASME, Edition 2001 Section II, Part D - Properties, Table NF-2, 678 (2001).
  • [26] ASME, Edition 2010 Section II, Part D - Properties (metric), Table TE-3, 715 (2010).
  • [27] ASME, Edition 2001, Section II, Part D - Properties, Subpart 2, Physical Properties Tables, TABLE NF-2, 678 (2001).
  • [28] B.N. Singh et al., Risø-R-1009(EN) (Risø National Laboratory, Roskilde, 1998).
  • [29] B.N. Singh et al., Risø-R-839(EN) (Risø National Laboratory, Roskilde, 1995).
  • [30] B.N. Singh et al., Risø-R-937(EN). Thermal Cycles, ITER R&D Task T213EU (Risø National Laboratory, Roskilde, 1997).
  • [31] B.N. Singh et al., Risø-R-971(EN) (Risø National Laboratory, Roskilde, 1997).
  • [32] B.N. Singh and S.J. Zinkle, J. Nucl. Mater. 206, 212 (1993).
  • [33] C.R. Barrett and O.D. Sherby, Trans. AIME 230, 1322 (1964).
  • [34] C. Yin et al., Int. J. Refract. Metals Hard Mater. 75, 153 (2018).
  • [35] C. Petersen and A. von der Weth, Final Report for Task: TW3-TTMA-002, Del 3, KIT (2010).
  • [36] C. Upthegrove and H.L. Burghoff, ASTM Special Technical Publication 181 (1956).
  • [37] C.Y. Ho et al., J. Phys. Chem. Ref. Data 3, 242 (1974).
  • [38] D. Rupp and S.M. Weygand, J. Nucl. Mater. 417, 477 (2011).
  • [39] D.T. Hurd, “Tungsten,” Metals Handbook, Volume 1, Properties and Selection of Metals (American Society for Metals, Ohio, 1961) p. 1225.
  • [40] Deutsches Kupferinstitut, Werkstoff - Datenblätter: Cu-OFE, Cu-DHP, Cu-ETP, Cu-HCP (2005).
  • [41] D.R. Lide and H.V. Kehiaian, CRC handbook of thermophysical and thermochemical data (CRC Press, Boca Raton, FL, 1994) p. 28.
  • [42] D.R. Lide and H.V. Kehiaian, CRC handbook of thermophysical and thermochemical data (CRC Press, Boca Raton, FL, 1994) p. 182.
  • [43] EN 1652:1997 + AC:2003, Copper and copper alloys – Plate, Sheet, Strip and Circles for General Purposes.
  • [44] S.A. Fabritsiev and A.S. Pokrovsky, J. Nucl. Mater. 249, 239 (1997).
  • [45] G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate properties: A Handbook (MIT Press, Cambridge, MA, 1971) p. 181.
  • [46] G.K. White and S.J. Collocott, J. Phys. Chem. Ref. Data 13, 1251 (1984).
  • [47] H.M. Ledbetter and S.A. Kim, Mater. Sci. Eng. A, 101, 87 (1988).
  • [48] H. Iida, Transmutation in Cu and Cu alloy, ITER report NAG-247 Cu Trans, N 73 RI 05-04-04 W 0.1, rev. 26 April, (Cu104) (2005).
  • [49] I.V. Gorynin et al., J. Nucl. Mater. 191, 421 (1992).
  • [50] ITER Document No. G74 MA16, ITER Material Properties Handbook, File Code: ITER-AK02-3112.
  • [51] J.R. Davis, Copper and Copper Alloys, ASM Specialty Handbook (ASM International, Ohio, 2001).
  • [52] K. Zhang et al., Fusion Eng. Des. 144, 148 (2019).
  • [53] M. Wirtz et al., Phys. Scr. T 167, 014015 (2016).
  • [54] M. Wirtz et al., Nucl. Fusion 57, 066018 (2017).
  • [55] M. Levy et al., Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. II, (Academic Press, New York, 2001) p. 99, 340.
  • [56] M. Levy et al., Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. II (Academic Press, New York, 2001) p. 99.
  • [57] M.W. Chase Jr., NIST-JANAF Thermochemical Tables, 4th Ed. (American Chemical Society and American Institute of Physics, New York, 1998), Vol. II, Cr-Zr, p. 1005.
  • [58] N.J. Simon et al., NIST Monograph 177 (National Institute of Standards and Technology, Washington DC, 1992).
  • [59] Nuclear fusion programme annual report of the Association Forschungszentrum Karlsruhe/EURATOM, January 2007 - December 2007, Programm Kernfusion, Forschungszentrum Karlsruhe, Wissenschaftliche Berichte, FZKA 7383.
  • [60] Plansee, “Tungsten”, www.plansee.com, 2016. https://www.plan see.com/en/materials/tungsten.html
  • [61] R. Lowrie and A.M. Gonas, J. Appl. Phys. 28, 4505 (1967).
  • [62] Report on the Mechanical and Thermal Properties of Tungsten and TZM Sheet Produced in the Refractory Metal Sheet Rolling Program, Part 1 (Southern Research Institute, Alabama, 1966) p. 49–52.
  • [63] R.P. Reed and R.P. Mikesell, NBS Monograph 101 (National Bureau of Standards, Washington DC, 1967).
  • [64] S.A. Fabritsiev and A.S. Pokrovsky, Intermediate report on Task G 74 TD 05 FR. October (2004).
  • [65] Specification for copper bar, bus bar, rod, and shapes, ASTM B187-94.
  • [66] W. Vandermeulen, Report FT/Mol/MAT-7/T85-003 (1985).
  • [67] Y.S. Touloukian, editor, (IFI/Plenum, New York-Washington, 1975) p. 77.
  • [68] Y.S. Touloukian and E.H. Buyco, Thermophysical Properties of Matter, 4: Specific Heat, Metallic Elements and Alloys (Plenum, New York, 1970) p. 51–61.
  • [69] S.J. Zinkle, J. Phys. Metals Phys. 18, 377 (1988).
  • [70] S.J. Zinkle and S.A. Fabritsiev, Supplement to Nuclear Fusion 5, 163 (1994).
  • [71] A. Houhenwarter and R. Pippan, Mater. Sci. Eng. A 540, 89 (2012).
  • [72] X.T. Miao et al., Theor. Appl. Fract. Mech. 96, 202 (2018).
  • [73] A. Pirondi and C.D. Donne, Eng. Fract. Mech. 68, 1385 (2001).
  • [74] J. Zhang et al., Mater. Des. 137, 473 (2018).
  • [75] F. Li et al., Metals 11, 844 (2021).