Plasma and Fusion Research

Volume 20, 1403033 (2025)

Regular Articles


Self-Consistent Establishment of the Bohm Criterion in Two-Ion-Species Plasmas Based on the Anisotropic-Ion-Pressure Plasma Fluid Scheme
Satoshi TOGO1), Tomonori TAKIZUKA2), Hirohiko TANAKA3), Ryuya IKEZOE4), Naomichi EZUMI1), Kazuma EMOTO1,a), Mizuki SAKAMOTO1)
1)
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
2)
TFuEL, Tokai 319-1112, Japan
3)
Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
4)
Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan
a)
Present address: National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
(Received 31 March 2025 / Accepted 7 May 2025 / Published 4 July 2025)

Abstract

The Bohm criterion for two-ion-species plasmas in a scrape-off layer–divertor system is investigated using the anisotropic-ion-pressure plasma fluid scheme and the virtual divertor model, which does not require the boundary condition of the incident flow speed at a divertor target. The flow velocities of the two ion species at the target obtained from our fluid simulations agree well with those obtained from earlier particle-in-cell simulations for both collisionless and collisional cases. The so-called Bohm criterion can be self-consistently established without direct treatment of the sheath region. Examining the time evolution of the flow velocity at the target, we infer that the Bohm criterion is not related to sheath potential formation but is the stability condition for an equilibrium solution of the quasi-neutral plasma region.


Keywords

scrape-off layer–divertor plasmas, fluid simulation, anisotropic-ion pressure, Bohm criterion, two-ion-species plasmas

DOI: 10.1585/pfr.20.1403033


References

  • [1] H. Kawashima et al., Plasma Fusion Res. 1, 031 (2006).
  • [2] K. Shimizu et al., Nucl. Fusion 49, 065028 (2009).
  • [3] R. Schneider et al., Contrib. Plasma Phys. 46, 3 (2006).
  • [4] X. Bonnin et al., Plasma Fusion Res. 11, 1403102 (2016).
  • [5] S.I. Braginskii, Rev. Plasma Phys. 1, 205 (1965).
  • [6] D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, edited by A. Guthrie and R.K. Wakerling, (New York, McGraw-Hill, 1949), chapter 3, p. 77.
  • [7] K.-U. Riemann, IEEE Trans. Plasma Sci. 23, 709 (1995).
  • [8] S. Azuma et al., Contrib. Plasma Phys. 52, 512 (2012).
  • [9] E.M. Hollmann et al., Rev. Sci. Instrum. 72, 623 (2001).
  • [10] H. Yazawa et al., Jpn. J. Appl. Phys. 45, 8208 (2006).
  • [11] K. Sugiura et al., Contrib. Plasma Phys. 64, e202300150 (2024).
  • [12] S. Togo et al., J. Comput. Phys. 310, 109 (2016).
  • [13] S. Togo et al., Nucl. Fusion 59, 076041 (2019).
  • [14] T. Takizuka et al., Proceedings 13th Burning Plasma Simulation Initiative Meeting (2015) 60. https://www.riam.kyushu-u.ac.jp/sosei/bpsi/2015/BPSI2015_proc.pdf.
  • [15] S. Togo et al., Proceedings 43rd JSST Annual International Conference on Simulation Technology & the 23rd Asia Simulation Conference (2024) 60.
  • [16] E. Sytova et al., Contrib. Plasma Phys. 58, 622 (2018).
  • [17] S.O. Makarov et al., Phys. Plasmas 28, 062308 (2021).