Plasma and Fusion Research

Volume 20, 1402022 (2025)

Regular Articles


Development of 154/116 GHz Dual-Frequency Gyrotron for the Large Helical Device
Tsuyoshi KARIYA1), Ryutaro MINAMI1), Takashi SHIMOZUMA2), Satoshi ITO3), Shin KUBO4), Hiroe IGAMI2), Masaki NISHIURA2), Mizuki SAKAMOTO1)
1)
Plasma Research Center, University of Tsukuba, Ibaraki 305-8577, Japan
2)
National Institute for Fusion Science, National Institutes of Natural Sciences, Gifu 509-5292, Japan
3)
ITER Organization, Heating & Current Drive Division, Saint-Paul-lez-Durance, France
4)
College of Science and Engineering, Chubu University, Aichi 487-8501, Japan
(Received 24 December 2024 / Accepted 28 January 2025 / Published 18 April 2025)

Abstract

Based on the successful results of three 77 and two 154 GHz gyrotrons development and their contributions to large helical device (LHD) plasma experiments, a new 154/116 GHz dual-frequency gyrotron was developed. The optimal combination of cavity oscillation modes for dual-frequency oscillations at 154 and 116 GHz and optimal designs for the electron gun, cavity, mode converter, RF transmission mirrors, output window, and collector were determined. In an experimental test of the 154/116 GHz dual-frequency gyrotron, maximum powers of 1.66 and 1.34 MW were achieved at 154.05 and 116.15 GHz with pulse widths of 2.5 ms, respectively.


Keywords

gyrotron, dual-frequency, MW, ECRH, LHD

DOI: 10.1585/pfr.20.1402022


References

  • [1] M. Thumm et al., IEEE Trans. Plasma Sci. 35, 143 (2007).
  • [2] D.S. Tax et al., IEEE Trans. Plasma Sci. 42, 1128 (2014).
  • [3] L. Diwei et al., Fusion Eng. Des. 87, 1533 (2012).
  • [4] A.G. Litvak et al., Proc. 17th Joint Workshop on ECE and ECRH (EC-17) EPJ Web 32, 04003 (2012).
  • [5] S. Alberti et al., EPJ Web of Conf. 157, 03001 (2017).
  • [6] T. Kobayashi et al., Trans. Fusion Sci. Technol. 63, 160 (2013).
  • [7] K. Sakamoto et al., Nucl. Fusion 49, 095019 (2009).
  • [8] K. Sakamoto et al., IEEE 14th International Vacuum Electronics Conf. Print ISBN: 978-1-4673-5976-4 (2013).
  • [9] T. Kariya et al., Trans. Fusion Sci. Technol. 55, 91 (2009).
  • [10] H. Takahashi et al., Trans. Fusion Sci. Technol. 57, 19 (2010).
  • [11] R. Minami et al., Nucl. Fusion 53, 063003 (2013).
  • [12] H. Takahashi et al., Phys. Plasmas 21, 061506 (2014).
  • [13] H. Igami et al., EPJ Web of Conferences 203, 02001 (2019).
  • [14] H. Takahashi et al., Nucl. Fusion 57 086029 (2017).
  • [15] Y. Yoshimura et al., Plasma Phys. Control. Fusion 60 025012 (2018).
  • [16] T. Kariya et al., Nucl. Fusion 57, 066001 (2017).
  • [17] J.M. Neilson and R. Bunger, IEEE Trans. Plasma Sci. 30, 794 (2002).
  • [18] H. Takahashi et al., Plasma Fusion Res. 7, 1205154 (2012).