Plasma and Fusion Research
Volume 20, 1401057 (2025)
Regular Articles
- 1)
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- 2)
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama, Toyama 930-8555, Japan
- 3)
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu 509-5292, Japan
- 4)
- Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
Abstract
In recent years, the development of soft X-ray (SXR) light sources has progressed rapidly, particularly for applications within the water window region (23–44 Å), where high-resolution, high-contrast imaging of biological cells and macromolecules is possible. In this study, we analyze water window emission lines of samarium-like (Sm-like) Pb20+ ions observed using a compact electron beam ion trap at an electron beam energy of 565 eV. The analysis is carried out using a collisional-radiative model based on atomic data from HULLAC. Three distinct meta-stable states of Pb20+, each with a fractional population exceeding 1%, are identified. To explore the conditions under which meta-stable states are formed or suppressed across the isoelectronic sequence, we performed systematic atomic structure and transition rate calculations for Sm-like ions from Hg to Po (Z = 80–84). These results provide new insights into the role of energy level crossings and decay pathways in the formation of long-lived states, offering implications for optimizing soft X-ray emission in plasma-based light sources.
Keywords
highly charged ion, soft X-ray, meta-stable state, water window, lead, bismuth
Full Text
References
- [1] [1] S.A. Golyshev et al., Acta Naturae 15, 32 (2023).
- [2] J. Neethirajan et al., Phys. Rev. X 14, 031028 (2024).
- [3] A. Botrugno et al., Nucl. Instrum. Methods Phys. Res. A 623, 747 (2010).
- [4] H. Hara et al., APL Photonics 2, 086106 (2017).
- [5] H. Kawasaki et al., AIP Adv. 10, 065021 (2020).
- [6] T. Higashiguchi et al., Appl. Phys. Lett. 100, 014103 (2012).
- [7] M.S. Safronova et al., Phys. Rev. Lett. 113, 030801 (2014).
- [8] A. Botrugno et al., Nucl. Instrum. Methods Phys. Res. A 623, 747 (2010).
- [9] D. Kato et al., Nucl. Instrum. Methods Phys. Res. B 408, 16 (2017).
- [10] F. Zhou et al., J. Phys. B 50, 215001 (2017).
- [11] W. Li et al., Phys. Rev. A 91, 062501 (2015).
- [12] M. Mita et al., J. Phys. Conf. Ser. 875, 012019 (2017).
- [13] D. Song et al., J. Quant. Spectrosc. Radiat. Transfer 347, 109621 (2025).
- [14] N. Nakamura et al., Rev. Sci. Instrum. 79, 063104 (2008).
- [15] H.A. Sakaue et al., J. Instrum. 5, C08010 (2010).
- [16] A. Bar-Shalom et al., J. Quant. Spectrosc. Radiat. Transfer 71, 169 (2001).
- [17] C. Yamada et al., Rev. Sci. Instrum. 77, 066102 (2006).
- [18] Shimadzu Corporation. Laminar-type replica diffraction gratings for soft x-ray region (table of code numbers). https://www.shimadzu.com/opt/products/dif/od0gjn00000046ip.html (2025).
- [19] A. Kramida et al., NIST Atomic Spectra Database (ver. 5.12).https://physics.nist.gov/asd (2024).
- [20] I. Hughes et al., Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis (Oxford University Press, Oxford, UK, 2010).
- [21] Baseline with asymmetric least squares (pro)—originlab docu mentation. https://www.originlab.com/doc/App/Baseline-with-ALS (2025).
- [22] R. Garnett, Bayesian Optimization (Cambridge University Press, 2023).
- [23] Q. Lu et al., Phys. Rev. A 99, 042510 (2019).
- [24] C.-L. Yan et al., Phys. Rev. A 105, 032820 (2022).
- [25] C. Wu et al., Phys. Rev. A 111, 042818 (2025).
- [26] N. Kimura et al., Phys. Rev. A 108, 032818 (2023).
- [27] A. Windberger et al., Phys. Rev. A 94, 012506 (2016).
- [28] F. Torretti et al., Phys. Rev. A 95, 042503 (2017).
- [29] N. Kimura et al., Phys. Rev. A 102, 032807 (2020).
- [30] M.S. Safronova et al., Phys. Rev. A 90, 042513 (2014).
![[Plasma and Fusion Research]](/PFR/pfr_header.gif)