Plasma and Fusion Research

Volume 20, 1401015 (2025)

Regular Articles


Contribution of Hydrogen Molecular Activated Recombination to Plasma Particle Loss in DT-ALPHA
Keigo YOSHIMURA1), Hiroyuki TAKAHASHI1), Ryota NISHIMURA1), Tomoya HARA1), Shigetaka KAGAYA1), Tetsutarou OISHI1), Akinobu MATSUYAMA2), Kenji TOBITA1)
1)
Department of Quantum Science and Energy Engineering, Tohoku University, Sendai 980-8579, Japan
2)
Graduate School of Energy Science, Kyoto University, Uji 611-0011, Japan
(Received 17 July 2024 / Accepted 2 December 2024 / Published 21 February 2025)

Abstract

A hydrogen secondary gas feeding experiment was conducted with hydrogen plasma. A rollover of the electron density and a monotonic decrease in the electron temperature were observed as the amount of the secondary gas increased. The vibrational distribution and temperature of ground electronic hydrogen molecules were evaluated based on the Fulcher-α band spectroscopy. To analyze the contribution of molecular activated recombination (MAR) to plasma particle loss, the reaction rates of the dissociative attachment (DA) and ion conversion (IC) of vibrationally excited hydrogen molecules were calculated. The reaction rate of IC was approximately two orders of magnitude greater than that of DA and significantly increased with the onset of the density rollover. The IC reaction rate remained high even as the electron density decreased. This analysis is limited to the first reactions of MAR; however, the significance of IC-MAR is strongly indicated.


Keywords

molecular activated recombination, ion conversion, detached divertor, radio-frequency plasma, DT-ALPHA

DOI: 10.1585/pfr.20.1401015


References

  • [1] A. Loarte et al., Nucl. Fusion 47, S203 (2007).
  • [2] N. Asakura et al., Nucl. Fusion 57, 126050 (2017).
  • [3] S.I. Krasheninnkov et al., Phys. Lett. A 214, 285 (1996).
  • [4] A. Yu. Pigarov et al., Phys. Lett. A 222, 251 (1996).
  • [5] N. Ohno et al., Phys. Rev. Lett. 81, 818 (1998).
  • [6] N. Ezumi et al., J. Nucl. Mater. 266, 337 (1999).
  • [7] D. Nishijima et al., Plasma Phys. Control. Fusion 44, 597 (2002).
  • [8] S. Kado et al., J. Nucl. Mater. 337, 166 (2005).
  • [9] A. Okamoto et al., J. Nucl. Mater. 363, 395 (2007).
  • [10] A. Tonegawa et al., J. Nucl. Mater. 313, 1046 (2003).
  • [11] P.K. Browning et al., J. Nucl. Mater. 337, 232 (2005).
  • [12] B. Mihaljčić et al., Phys. Plasmas 14, 013501 (2007).
  • [13] L. Cai et al., Phys. Plasmas 15, 102505 (2008).
  • [14] M. Sakamoto et al., Nucl. Mater. Energy 12, 1004 (2017).
  • [15] N. Ezumi et al., Nucl. Fusion 59, 066030 (2019).
  • [16] G.R.A. Akkermans et al., Phys. Plasmas 27, 102509 (2020).
  • [17] H. Takahashi et al., Phys. Plasmas 23, 112510 (2016).
  • [18] K. Yoshimura et al., Plasma Fusion Res. 17, 1201082 (2022).
  • [19] A. Okamoto et al., Plasma Fusion Res. 3, 059 (2008).
  • [20] T. Seino et al., Plasma Fusion Res. 15, 1201056 (2020).
  • [21] R.K. Janev et al., Julich JUEL-4105 (2003).
  • [22] B. Xiao et al., Plasma Phys. Control. Fusion 46, 653 (2004).
  • [23] Y. Kuwahara et al., Plasma Fusion Res. 2, S1081 (2007).
  • [24] A. Okamoto et al., AIP Conf. Proc. 2319, 030007 (2021).
  • [25] R. Chandra et al., Nucl. Mater. Energy 34, 101360 (2023).
  • [26] E.M. Hollmann et al., Phys. Plasmas 8, 3314 (2001).
  • [27] K. Sawada and M. Goto, Atoms 4, 29 (2016).