Plasma and Fusion Research

Volume 20, 1302020 (2025)

Letters


Behavior of Sputtered Tungsten in the Divertor Plasma Simulator NAGDIS-II
Hirohiko TANAKA1,2), Shin KAJITA2,3), Noriyasu OHNO1,2)
1)
Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
2)
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
3)
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
(Received 28 October 2024 / Accepted 21 January 2025 / Published 17 April 2025)

Abstract

The core-degradation effect due to tungsten (W) - a proposed plasma-facing material for the operation of future nuclear fusion reactors such as ITER and DEMO - calls for the study of sputtered W. In this study, sputtered W from a point source in the linear divertor plasma simulator, NAGDIS-II, was investigated. A hyperspectral imaging (HSI) camera was used to image the spatial profile of the sputtered W in helium and argon mixture plasma with different incident ion energies. By applying the Abel transform and fittings with several functions and comparing with the theoretical value, it is found that the ionization effect is not obvious but the geometrical spreading effect is dominant for the axial decay of the local W emission profile.


Keywords

tungsten sputtering, decay length, hyperspectral imaging, divertor plasma simulator, NAGDIS-II

DOI: 10.1585/pfr.20.1302020


References

  • [1] Y. Homma et al., Nucl. Mater. Energy 12, 323 (2017).
  • [2] T. Abrams et al., Mater. Res. Express 10, 126503 (2023).
  • [3] M. Kaufmann and R. Neu, Fusion Eng. Des. 82, 521 (2007).
  • [4] V. Philipps, J. Nucl. Mater. 415, S2 (2011).
  • [5] R. Causey et al., J. Nucl. Mater. 266-269, 467 (1999).
  • [6] J. Wesson and D.J. Campbell, Tokamaks, (Oxford university press, 2011), 149.
  • [7] T. Nakano, J. Nucl. Mater. 415, S327 (2011).
  • [8] D. Nishijima et al., J. Nucl. Mater. 415, S96 (2011).
  • [9] S. Takamura et al., Nucl. Fusion 52, 123001 (2012).
  • [10] S. Kajita et al., J. Appl. Phys. 132, 181101 (2022).
  • [11] J. Coenen et al., J. Nucl. Mater. 463, 78 (2015).
  • [12] S. Kajita et al., Nucl. Fusion 49, 032002 (2009).
  • [13] S. Kajita et al., Nucl. Mater. Energy 25, 100828 (2020).
  • [14] A. Kirschner et al., Plasma Phys. Control. Fusion 60, 014041 (2017).
  • [15] N. Fedorczak et al., J. Nucl. Mater. 463, 85 (2015).
  • [16] C. Johnson et al., Nucl. Fusion 63, 096017 (2023).
  • [17] S. Kajita et al., J. Nucl. Mater. 548, 152844 (2021).
  • [18] S. Kajita et al., Sci. Rep. 8, 56 (2018).
  • [19] S. Kajita et al., J. Nucl. Mater. 540, 152350 (2020).
  • [20] M. Patino et al., Nucl. Fusion 64, 016011 (2023).
  • [21] N. Ohno et al., Nucl. Fusion 41, 1055 (2001).
  • [22] K. Dere, Astron. Astrophys. 466, 771 (2007).
  • [23] W. Eckstein, IPP-Report, IPP 9/132 (2002).
  • [24] D. Nishijima et al., Rev. Sci. Instrum. 91, 083501 (2020).
  • [25] E. Marenkov et al., J. Nucl. Mater. 496, 18 (2017).
  • [26] S. Kajita et al., J. Nucl. Mater. 420, 252 (2012).
  • [27] OPEN-ADAS Project, OPEN-ADAS: Atomic Data and Analysis Structure for Fusion http://open.adas.ac.uk (2024).
  • [28] H. van Eck et al., Fusion Eng. Des. 142, 26 (2019).