Plasma and Fusion Research

Volume 19, 1406004 (2024)

Regular Articles


Electron Beam-Induced Reduction of Silver on TiO2 Film
Arantxa Danielle S. MONTALLANA1), Lance Tristan Oliver R. PENGSON2), Mark D. ILASIN2), Magdaleno R. VASQUEZ Jr.2) and Motoi WADA1)
1)
Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
2)
University of the Philippines, Diliman, Quezon City 1101, Philippines
(Received 15 September 2023 / Accepted 27 November 2023 / Published 27 February 2024)

Abstract

A broad, low-energy electron beam extracted from a multi-cusp plasma source through a pair of mesh electrodes produced metallic silver (Ag) from the Ag compound prepared on the surface of titanium dioxide (TiO2) thin films. The TiO2 films were grown by thermal oxidation of magnetron-sputtered titanium (Ti) films. The reduced metallic Ag formed the Ag-TiO2 heterostructure. The reduction of the Ag compound was investigated by varying the operating pressure and the electron beam exposure time. The electron energy distribution function was measured using a retarding potential analyzer, while the electron current density measurements were obtained by collecting the electrons passing through the aperture of a shielded Faraday cup. Characterization of the synthesized heterostructure was performed using X-ray diffraction and Raman spectroscopy to check the chemical structure and composition, UV-Vis spectroscopy and 4-point probe to investigate the optoelectronic properties, and electron microscopy to observe the surface morphology of the films. The electron beam characteristics were correlated with the structure and properties of the synthesized Ag-TiO2 heterostructure.


Keywords

electron beam, EEDF, silver reduction, titanium dioxide

DOI: 10.1585/pfr.19.1406004


References

  • [1] S. Jalali et al., J. Taiwan Inst. Chem. Eng. 66, 357 (2016).
  • [2] X. Yang et al., J. Nanopart. Res. 16, 2526 (2014).
  • [3] A. Montallana et al., J. Vac. Sci. Technol. B 41, 042204 (2023).
  • [4] H. Kim et al., Plasma Chem. Plasma Process. 36, 45 (2016).
  • [5] A. Chauhan et al., Appl. Phys. Rev. 5, 041111 (2018).
  • [6] S. Dong et al., RSC Adv. 5, 14610 (2015).
  • [7] M. Rastogi et al., Mater. Sci. Semicond. 51, 33 (2016).
  • [8] P. Kamat, Acc. Chem. Res. 50, 527 (2017).
  • [9] B. Naik et al., J. Exp. Nanosci. 8, 462 (2013).
  • [10] S. Abbad et al., J. Environ. Chem. Eng. 8, 103718 (2020).
  • [11] X. Zheng et al., Inorg. Chem. Commun. 110, 107589 (2019).
  • [12] K. Wenderich et al., Chem. Rev. 116, 14587 (2016).
  • [13] R. White et al., Chem. Soc. Rev. 38, 481 (2009).
  • [14] C. Liu et al., Chinese J. Catal. 37, 340 (2016).
  • [15] Y. Ohkubo et al., J. Mater. Sci. 48, 5047 (2013).
  • [16] S. Seino et al., J. Nanopart. Res. 10, 1071 (2008).
  • [17] Y. Pai et al., J. Power Sources 159, 878 (2006).
  • [18] K. Song et al., ACS Catal. 2, 384 (2012).
  • [19] J. Kugai et al., Appl. Catal. B: Environ. 126, 306 (2012).
  • [20] J. Zou et al., Langmuir 22, 11388 (2006).
  • [21] M. Darwish et al., Green Chem. 24, 8142 (2022).
  • [22] A. Osonio and M. Vasquez, Appl. Surf. Sci. 432, 156 (2018).
  • [23] M. Vasquez et al., Vacuum 187, 110067 (2021).
  • [24] F. Chen, IEEE-ICOPS Meeting, Jeju, Korea Volume 2.
  • [25] K. Ehlers et al., Rev. Sci. Instrum. 53, 1429 (1982).
  • [26] A. Patel et al., Rev. Sci. Instrum. 89, 043510 (2018).
  • [27] M. Vasquez et al., Rev. Sci. Instrum. 85, 02A717 (2013).
  • [28] F. Hardcastle, Journal of the Arkansas Academy of Science 65, 43 (2011).
  • [29] G. Waterhouse et al., Phys. Chem. Chem. Phys. 3, 3838 (2001).
  • [30] Z. Dhoondia et al., J. Nanosci. Nanotechnol. 2, 15 (2012).
  • [31] Y. Sui et al., J. Vac. Sci. Technol. A 36, 051302 (2018).
  • [32] P. Makula et al., J. Phys. Chem. Lett. 9, 6814 (2018).
  • [33] Y. Nosaka et al., J. Phys. Chem. Lett. 7, 431 (2016).
  • [34] C. Liu et al., ACS Sustain. Chem. Eng. 2, 3 (2014).
  • [35] Z. Wang et al., ACS Catal. 8, 2039 (2018).
  • [36] S.C. Brown, Basic Data of Plasma Physics: The Fundamental Data on Electrical Discharges in Gases (American Institute of Physics, 1997).