Plasma and Fusion Research

Volume 19, 1403034 (2024)

Regular Articles


Analyses of Particle and Energy Balances using a Core-SOL-Divertor (CSD) Model for Tokamak DEMO-Reactor Studies
Kazuhiro YAMADA1,2), Kazuo HOSHINO2) and Akiyoshi HATAYAMA2)
1)
Central Japan Railway Company, Komaki 485-0801, Japan
2)
Keio University, Yokohama 223-8522, Japan
(Received 21 February 2024 / Accepted 9 October 2024 / Published 22 November 2024)

Abstract

Understanding of key physics and engineering parameters is one of the most important issues to conduct fundamental design studies of future fusion reactors. Also, sensitivity analyses of performance by parameter surveys need to be done for optimizing a reactor. This research aims at a qualitative analysis to identify directions of design parameter optimization for fusion reactors. For this purpose, a Core-SOL-Divertor (CSD) model has been employed, because it is suitable for a wide range of parameter surveys by changing various parameters with low computational costs. This paper analyzes the particle and energy balances of the JT-60U divertor plasma by using a CSD model and reveals dependencies of the balances on design parameters of the device. In addition, the same CSD model is applied to conduct divertor plasma analyses for a future demonstration reactor (JA-DEMO). The result shows that it is possible to obtain a low temperature state of its divertor plasma as has been already reported by a two-dimensional SOL-Divertor integrated code. From these results, this paper shows that the CSD model is applicable to basic studies of directions and design concepts for future fusion reactors.


Keywords

CSD model, parameter survey, sensitivity analysis, JT-60U, JA DEMO

DOI: 10.1585/pfr.19.1403034


References

  • [1] H. Kawashima et al., Plasma Fusion Res. 1, 31 (2006).
  • [2] K. Shimizu et al., Nucl. Fusion 49, 065028 (2009).
  • [3] S. Wiesen et al., J. Nucl. Mater. 463, 480 (2015).
  • [4] X. Bonnin et al., Plasma Fusion Res. 11, 1403102 (2016).
  • [5] F. Subba et al., Contrib. Plasma Phys. 58, 758 (2018).
  • [6] F. Subba et al., Nucl. Fusion 61, 106013 (2021).
  • [7] N. Asakura et al., Nucl. Fusion 61, 126057 (2021).
  • [8] N. Asakura et al., Processes 10, 872 (2022).
  • [9] R. Hiwatari et al., Contrib. Plasma Phys. 44, 76 (2004).
  • [10] R. Hiwatari et al., J. Nucl. Mater. 337-339, 386 (2005).
  • [11] R. Hiwatari et al., Contrib. Plasma Phys. 48, 174 (2008).
  • [12] K. Borrass, Nucl. Fusion 31, 1035 (1991).
  • [13] W.D. Langer et al., IEEE Trans. Plasma Sci. PS-13, No.9, 163 (1985).
  • [14] A. Hatayama et al., J. Nucl. Mater. 290-293, 407 (2001).
  • [15] P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Institute of Physics Publishing, 2000) P.94.
  • [16] D. Reiter, The data file HYDHEL: Atomic and Molecular Data for EIRENE based upon: Janev, Langer, Evans, Post, “Elementary Processes in Hydrogen-Helium Plasmas”, ver. Jan. 13, 2020.
  • [17] A. Hatayama et al., Nucl. Fusion 40, 2009 (2000).
  • [18] N. Asakura et al., J. Nucl. Mater. 241-243, 559 (1997).
  • [19] N.A. Uckan et al., ITER PHYSICS DESIGN GUIDELINES, 1989.
  • [20] D.E. Post et al., Atomic Nucl. Data Tables 20, 397 (1977).
  • [21] D.E. Post et al., J. Nucl. Mater. 121, 171 (1984).
  • [22] OPEN-ADAS, https://open.adas.ac.uk/, accessed on 28 Apr. 2024.