Plasma and Fusion Research

Volume 19, 1403019 (2024)

Regular Articles

Implication of Parallel Velocity Gradient-Driven Instability with Hydrodynamic Electrons to SOL Width
Itsuki OYAMA and Yusuke KOSUGA1)
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
(Received 29 September 2023 / Accepted 29 February 2024 / Published 2 May 2024)


Herein, a new aspect of the parallel velocity gradient (PVG)- driven instability is explored. We present its linear stability analysis and investigate the transport properties of the instability, focusing on a specific electron motion called hydrodynamic. In the realm of hydrodynamic electrons, electron motions across the magnetic field are much faster than those along the magnetic field. This electron motion plays an important role in fluctuation transport. This analysis reveals that the PVG convective cell is newly excited, and its feature of particle transport is favorable, since the particle pinch by PVG with adiabatic electrons disappears.


PVG instability, transport, hydrodynamic electron, scrape-off layer

DOI: 10.1585/pfr.19.1403019


  • [1] H. Zohm, Edge localized modes (elms), Plasma Phys. Control. Fusion 38(2), 105 (1996).
  • [2] P.B. Snyder, H.R. Wilson, J.R. Ferron, L.L. Lao, A.W. Leonard, T.H. Osborne, A.D. Turnbull, D. Mossessian, M. Murakami and X.Q. Xu, Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes, Phys. Plasmas 9(5), 2037 (2002).
  • [3] A.W. Leonard, Edge-localized-modes in tokamaks, Phys. Plasmas 21(9) (2014).
  • [4] E. Viezzer, M.E. Austin, M. Bernert, K.H. Burrell, P. Cano-Megias, X. Chen, D.J. Cruz-Zabala, S. Coda, M. Faitsch, O. Février, L. Gil, C. Giroud, T. Happel, G.F. Harrer, A.E. Hubbard, J.W. Hughes, A. Kallenbach, B. Labit, A. Merle, H. Meyer, C. Paz-Soldan, P. Oyola, O. Sauter, M. Siccinio, D. Silvagni and E.R. Solano, Prospects of core–edge integrated no-elm and small-elm scenarios for future fusion devices, Nucl. Mater. Energy 34, 101308 (2023).
  • [5] T. Eich, B. Sieglin, A. Scarabosio, W. Fundamenski, R.J. Goldston and A. Herrmann, Inter-elmpower decay length for jet and asdex upgrade: Measurement and comparison with heuristic drift-based model, Phys. Rev. Lett. 107, 215001 (Nov. 2011).
  • [6] T. Eich, A.W. Leonard, R.A. Pitts, W. Fundamenski, R.J. Goldston, T.K. Gray, A. Herrmann, A. Kirk, A. Kallenbach, O. Kardaun, A.S. Kukushkin, B. LaBombard, R. Maingi, M.A. Makowski, A. Scarabosio, B. Sieglin, J. Terry, A. Thornton, ASDEX Upgrade Team, and JET EFDA Contributors, Scaling of the tokamak near the scrape-off layer h-mode power width and implications for iter, Nucl. Fusion 53(9), 093031 (Aug. 2013).
  • [7] R.J. Goldston, Heuristic drift-based model of the power scrape-off width in low-gas-puff h-mode tokamaks, Nucl. Fusion 52(1), 013009 (Dec. 2011).
  • [8] S.J. Zweben, J.A. Boedo, O. Grulke, C. Hidalgo, B. LaBombard, R.J. Maqueda, P. Scarin, and J.L. Terry, Edge turbulence measurements in toroidal fusion devices, Plasma Phys. Control. Fusion 49(7), S1 (2007).
  • [9] A.J. Wootton, M.E. Austin, R.D. Bengtson, J.A. Boedo, R.V. Bravenec, D.L. Brower, J.Y. Chen, G. Cima, P.H. Diamond, R.D. Durst et al., Fluctuations and anomalous transport (in tokamaks, particularly text), Plasma Phys. Control. Fusion 30(11), 1479 (1988).
  • [10] C.M. Greenfield, J.C. DeBoo, T.C. Luce, B.W. Stallard, E.J. Synakowski, L.R. Baylor, K.H. Burrell, T.A. Casper, E.J. Doyle, D.R. Ernst et al., Understanding and control of transport in advanced tokamak regimes in diii-d, Phys. Plasmas 7(5), 1959 (2000).
  • [11] J.R. Myra, D.A. D'Ippolito and D.A. Russell, Turbulent transport regimes and the scrape-off layer heat flux width, Phys. Plasmas 22(4), 042516 (2015).
  • [12] M. Giacomin, A. Stagni, P. Ricci, J.A. Boedo, J. Horacek, H. Reimerdes and C.K. Tsui, Theory-based scaling laws of near and far scrape-off layer widths in single-null l-mode discharges, Nucl. Fusion 61(7), 076002 (2021).
  • [13] N. Asakura, ITPA SOL, and Divertor Topical Group, Understanding the sol flow in l-mode plasma on divertor tokamaks, and its influence on the plasma transport, J. Nucl. Mater. 363, 41 (2007).
  • [14] J.A. Boedo, Edge turbulence and sol transport in tokamaks, J. Nucl. Mater. 390, 29 (2009).
  • [15] N. D'Angelo, Kelvin—helmholtz instability in a fully ionized plasma in a magnetic field, Phys. Fluids 8(9), 1748 (1965).
  • [16] X. Garbet, C. Fenzi, H. Capes, P. Devynck and G. Antar, Kelvin–helmholtz instabilities in tokamak edge plasmas, Phys. Plasmas 6(10), 3955 (1999).
  • [17] Y. Kosuga, S.-I. Itoh and K. Itoh, Density peaking by parallel flow shear driven instability, Plasma Fusion Res. 10, 3401024 (2015).
  • [18] Y. Kosuga, S.-I. Itoh and K. Itoh, Turbulence dynamics with the coupling of density gradient and parallel velocity gradient in the edge plasmas, Contrib. Plasma Phys. 56(6-8), 511 (2016).
  • [19] Y. Kosuga, S.-I. Itoh and K. Itoh, Zonal flow generation in parallel flow shear driven turbulence, Phys. Plasmas 24(3), 032304 (2017).
  • [20] T. Kaneko, H. Tsunoyama and R. Hatakeyama, Drift-wave instability excited by field-aligned ion flow velocity shear in the absence of electron current, Phys. Rev. Lett. 90(12), 125001 (2003).
  • [21] S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T. Mitsuzono, Y. Nagashima, H. Arakawa, T. Yamada, Y. Miwa, N. Kasuya et al., A concept of cross-ferroic plasma turbulence, Scientific Reports 6(1), 22189 (2016).
  • [22] D.R. McCarthy, A.E. Booth, J.F. Drake and P.N. Guzdar, Three-dimensional simulations of the parallel velocity shear instability, Phys. Plasmas 4(2), 300 (1997).
  • [23] O.E. Garcia, V. Naulin, A.H. Nielsen and J.J. Rasmussen, Computations of intermittent transport in scrape-off layer plasmas, Phys. Rev. Lett. 92, 165003 (Apr. 2004).
  • [24] S. Arai and Y. Kosuga, Characteristics of density and temperature fluctuation in fusion edge plasma and implication on scrape off layer width, Plasma Fusion Res. 17, 1403050 (2022).
  • [25] A. Hasegawa and M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett. 50(9), 682 (1983).
  • [26] R. Wituła and D. Słota, Cardano's formula, square roots, chebyshev polynomials and radicals, J. Math. Anal. Appl. 363(2), 639 (2010).
  • [27] J.C. Li and P.H. Diamond, Negative viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field, Phys. Plasmas 24(3), 032117 (2017).
  • [28] A. Yoshizawa, S.I. Itoh and K. Itoh, Plasma and fluid turbulence: theory and modelling (CRC Press, 2002).