Plasma and Fusion Research

Volume 19, 1403003 (2024)

Regular Articles


Effect of Large-Angle Scattering on Particle Transport and Heat Flux in Advanced Divertor Magnetic Field Configurations
Daisuke UMEZAKI, Hideaki MATSUURA and Kazuo HOSHINO1)
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka, Fukuoka 819-0395, Japan
1)
Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
(Received 6 September 2023 / Accepted 26 November 2023 / Published 12 January 2024)

Abstract

Divertor heat loads are one of the most significant issues affecting fusion reactors. Atomic processes play a crucial role in reduction of the divertor heat load. Notably, elastic scattering between ions and neutral particles can be characterized as large-angle scattering. A large fraction of ion energy is transferred to neutral particles, and the ion direction can be significantly changed by a single large-angle scattering event. In abundant neutral particle regions such as divertor plasmas, the large-angle elastic scattering results in additional ion transport perpendicular to magnetic field lines. Effect of the additional ion transport is expected to be significant at low magnetic field strength and long Larmor radii, such as in a case of advanced divertors (e.g., Super-X and Snowflake divertors). In this study, we investigated the effect of the large-angle elastic scattering at low magnetic field strength and long divertor legs with reference to advanced divertor configurations using an orbital calculation. The large-angle elastic scattering transport is seen to cause a spread in density profiles and a reduction of heat flux. The results of this study show that for the short (long) leg divertor configuration like JT-60U (advanced divertor), the peak heat flux is reduced by around 15% (21%) when the magnetic field strength is 0.5 T in comparison to the model that assumes no guiding center movement due to the elastic scattering. It is also shown that the assumption of isotropic elastic scattering with neutral particles leads to excessive suppression of ion flows.


Keywords

elastic scattering, large-angle scattering, divertor, edge plasma, atomic process, advanced divertor

DOI: 10.1585/pfr.19.1403003


References

  • [1] K. Hoshino et al., Fusion Eng. Des. 123, 352 (2017).
  • [2] N. Asakura et al., Nucl. Fusion 61, 126057 (2021).
  • [3] N. Asakura et al., Nucl. Mater. Energy 26, 100864 (2021).
  • [4] P.M. Valanju et al., Phys. Plasmas 16, 056110 (2009).
  • [5] P.M. Valanju et al., Fusion Eng. Des. 85, 46 (2010).
  • [6] D.D. Ryutov, Phys. Plasmas 14, 064502 (2007).
  • [7] D.D. Ryutov et al., Phys. Plasmas 15, 092501 (2008).
  • [8] A.S. Kukushkin et al., Fusion Eng. Des. 86, 2865 (2011).
  • [9] S. Wiesen et al., J. Nucl. Mater. 463, 480 (2015).
  • [10] X. Bonnin et al., Plasma Fusion Res. 11, 1403102 (2016).
  • [11] N. Asakura et al., Fusion Sci. Technol. 63, 75 (2013).
  • [12] N. Asakura et al., J. Nucl. Mater. 463, 1238 (2015).
  • [13] K. Hoshino et al., Contrib. Plasma Phys. 52 (5-6), 550 (2012).
  • [14] H. Kawashima et al., Plasma Fusion Res. 1, 031 (2006).
  • [15] K. Shimizu et al., Nucl. Fusion 49, 3403070 (2009).
  • [16] P.S. Krstić and D.R. Schultz, At. Plasma-Mat. Interact. Data Fusion 8, 1 (1998).
  • [17] D. Umezaki and H. Matsuura, Plasma Fusion Res. 16, 2403021 (2021).
  • [18] D. Umezaki et al., Contrib. Plasma Phys. e202300064 (2023).
  • [19] D. Tskhakaya and S. Kuhn, Contrib. Plasma Phys. 42 (2-4), 302 (2002).
  • [20] D. Tskhakaya and R. Schneider, J. Comp. Phys. 225, 829 (2007).
  • [21] D. Tskhakaya et al., Contrib. Plasma Phys. 47, 563 (2007).
  • [22] T. Takizuka et al., J. Nucl. Mater. 313, 1331 (2003).
  • [23] T. Takizuka, Plasma Sci. Technol. 13, 316 (2011).
  • [24] T. Takizuka, Plasma Phys. Cont. Fusion 59, 034008 (2017).
  • [25] K. Shimizu, J. Nucl. Mater. 220, 410 (1995).
  • [26] B.A. Trubnikov et al., Rev. Plasma Phys. 1, 105 (1965).
  • [27] K. Shimizu and T. Takizuka, J. Plasma Fusion Res. 71, 1135 (1995).
  • [28] S.I. Braginskii, Trans. Processes Plasma Rev. Plasma Phys. 1, 205 (1965).
  • [29] H. Matsuura and Y. Nakao, Phys. Plasmas 13, 062507 (2006).
  • [30] H. Matsuura et al., Plasma Fusion Res. 11, 1403105 (2016).
  • [31] H. Matsuura et al., IEEE Trans. Plasma Sci. 46, 6 (2018).
  • [32] S. Sugiyama et al., Phys. Plasmas 24, 092517 (2017).
  • [33] S. Sugiyama et al., Plasma Fusion Res. 14, 3403123 (2019).
  • [34] S. Sugiyama et al., Nucl. Fusion 60, 076017 (2020).
  • [35] K. Kimura et al., Rev. Sci. Instrum. 92, 053524 (2021).
  • [36] K. Hoshino et al., J. Nucl. Mater. 463, 573 (2015).
  • [37] M.S. Islam et al., Plasma Fusion Res. 16, 2403049 (2021).
  • [38] R. Schneider et al., Contrib. Plasma Phys. 46, 1 (2006).
  • [39] P.C. Stangeby, Plasma Phys. Cont. Fusion. 43, 223 (2000).
  • [40] T. Takizuka et al., JAERI-Research 2003-010.
  • [41] K. Shimizu et al., J. Nucl. Mater. 313-316, 1277 (2003).
  • [42] M.H. Hughes and D.E. Post, J. Comp. Phys. 28, 43 (1978).