Plasma and Fusion Research

Volume 19, 1403002 (2024)

Regular Articles


Computational Study of the Supersonic Molecular Beam Injection in Thailand Tokamak-1 based on the 2D Fluid Model
Kitti RONGPUIT1), Apiwat WISITSORASAK1,2) and Jiraporn PROMPING3)
1)
Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
2)
Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
3)
Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
(Received 27 February 2023 / Accepted 24 November 2023 / Published 12 January 2024)

Abstract

The successful operation of a tokamak requires effective and appropriate methods of plasma fueling. In the development plan for Thailand Tokamak-1 (TT-1), the use of supersonic molecular beam injection (SMBI) has been proposed as a method that can more effectively and deeply deliver fueling gas compared to the gas puffing method. In this study, we used 2D fluid simulation to investigate the impact of SMBI on plasma transport in TT-1. Our model incorporated the continuity equations, energy balance equations, momentum equation, continuity of fuel equations, and momentum equation of fuel. BOUT++ is then used to solve these equations by a finite difference method with the field-aligned coordinates in the edge region of the tokamak. Our simulation results showed that when hydrogen fuel gas is injected into the plasma via SMBI from the low-field side at the speed in the range of 600 - 1200 m/s, the electron density in the edge region locally increases due to dissociation and ionization in the region where the fuel gas meets the plasma. This subsequently leads to a decrease in the ion and electron temperatures. The increased density then spreads throughout the plasma volume within approximately 10 ms. Increasing the injection speed leads to a deeper penetration length for the fuel deposition.


Keywords

BOUT++ code, fusion energy, supersonic molecular beam injection, Thailand Tokamak-1

DOI: 10.1585/pfr.19.1403002


References

  • [1] S. Hong-Juan, D. Xuan-Tong, Y. Liang-Hua, F. Bei-Bin, L. Ze-Tian, D. Xu-Ru and Y. Qing-Wei, Plasma Phys. Control. Fusion 52(4), 045003 (2010).
  • [2] J. Xiao, Z. Yang, G. Zhuang, Q. Hu, X. Feng and M. Liu, Plasma Sci. Technol. 16(1), 17 (2014).
  • [3] W.W. Xiao, P.H. Diamond, W.C. Kim, L.H. Yao, S.W. Yoon, X.T. Ding, S.H. Hahn, J. Kim, M. Xu, C.Y. Chen et al., Nucl. Fusion 54(2), 023003 (2014).
  • [4] H. Takenaga et al., J. Nucl. Mater. 390, 869 (2009).
  • [5] X. Zheng, J. Li, J. Hu, J. Li, R. Ding, B. Cao and J. Wu, Plasma Phys. Control. Fusion 55(11), 115010 (2013).
  • [6] X. Yuan, J. Li, J. Wu, J. Li, Y. Chen, H. Zhuang, Y. Zhou, X.W. Zheng and J. Hu, Fusion Eng. Des. 134, 62 (2018).
  • [7] A. Tamman and N. Somboonkittichai, Plasma Fusion Res. 15, 2402067 (2020).
  • [8] D.L. Yu, C.Y. Chen, L.H. Yao, J.Q. Dong, B.B. Feng, Y. Zhou, Z.B. Shi, J. Zhou, X.Y. Han, W.L. Zhong et al., Nucl. Fusion 52(8), 082001 (2012).
  • [9] D. Wei, L. Yi, W. Xian-Qu, C. Wei, D. Yun-Bo, S. Ohdachi, J. Xiao-Quan, S. Yong, C. Jian-Yong, Z. Jun et al., Nucl. Fusion 54(1), 013010 (2013).
  • [10] W.W. Xiao, P.H. Diamond, X.L. Zou, J.Q. Dong, X.T. Ding, L.H. Yao, B.B. Feng, C.Y. Chen, W.L. Zhong, M. Xu et al., Nucl. Fusion 52(11), 114027 (2012).
  • [11] R. Schneider, X. Bonnin, K. Borrass, D.P. Coster, H. Kastelewicz, D. Reiter, V.A. Rozhansky and B.J. Braams, Contrib. Plasma Phys. 46(1-2), 3 (2006).
  • [12] E.L. Vold, F. Najmabadi and R.W. Conn, Nucl. Fusion 32(8), 1433 (1992).
  • [13] T.D. Rognlien, B.J. Braams and D.A. Knoll, Contrib. Plasma Phys. 36(2-3), 105 (1996).
  • [14] T.D. Rognlien, D.D. Ryutov, N. Mattor and G.D. Porter, Phys. Plasmas 6(5), 1851 (1999).
  • [15] Y.-H. Wang, W.-F. Guo, Z.-H. Wang, Q.-L. Ren, A.-P. Sun, M. Xu, A.-K. Wang and N. Xiang, Chinese Physics B 25(10), 106601 (2016).
  • [16] J. Promping, A. Wisitsorasak, B. Chatthong and K. Nilgumhang, Plasma Fusion Res. 15, 2403033 (2020).
  • [17] S.I. Braginskii, Sov. Phys. JETP 6(33), 358 (1958).
  • [18] Z.H. Wang, X.Q. Xu, T.Y. Xia and T.D. Rognlien, Nucl. Fusion 54(4), 043019 (2014).
  • [19] B.D. Dudson, M.V. Umansky, X.Q. Xu, P.B. Snyder and H.R. Wilson, Comput. Phys. Commun. 180(9), 1467 (2009).
  • [20] B.D. Dudson, A. Allen, G. Breyiannis, E. Brugger, J. Buchanan, L. Easy, S. Farley, I. Joseph, M. Kim, A.D. McGann et al., J. Plasma Phys. 81(1), (2015).
  • [21] T.Y. Xia, X.Q. Xu and P.W. Xi, Nucl. Fusion 53(7), 073009 (2013).
  • [22] M.A. Beer, S.C. Cowley and G.W. Hammett, Phys. Plasmas 2(7), 2687 (1995).
  • [23] F. Hariri and M. Ottaviani, Comput. Phys. Commun. 184(11), 2419 (2013).
  • [24] J. Promping, S. Sangaroon, A. Wisitsorasak, B. Chatthong, R. Picha and T. Onjun, Plasma Fusion Res. 13, 3403094 (2018).
  • [25] M.J. Seaton, Monthly Notices of the Royal Astronomical Society 119(2), 81 (1959).
  • [26] G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126(1), 202 (1996).
  • [27] S. Buaruk, T. Makmool, J. Promping, T. Onjun, S. Sangaroon, A. Wisitsorasak, J. Garcia and B. Chatthong, Plasma Fusion Res. 14, 3403153 (2019).
  • [28] G.L. Xiao, W.L. Zhong, X.R. Duan, B.B. Feng, C.Y. Chen, J. Bucalossi, X.L. Zou, J.S. Hu, J.-G. Kwak, W.W. Xiao et al., Reviews of Modern Plasma Physics 7(1), 2 (2022).