Plasma and Fusion Research

Volume 19, 1402022 (2024)

Regular Articles


Observation and Identification of W19+-W23+ Spectra in the EUV Wavelength Region in the Vicinity of 200Å
Ryota NISHIMURA, Tetsutarou OISHI, Izumi MURAKAMI1,2), Daiji KATO1,3), Hiroyuki A SAKAUE1), Shivam GUPTA1), Hayato OHASHI4), Motoshi GOTO1,2), Yasuko KAWAMOTO1,2), Tomoko KAWATE1,2), Hiroyuki TAKAHASHI and Kenji TOBITA
Department of Quantum Science and Energy Engineering, Tohoku University, Sendai 980-8579, Japan
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga 816-8580, Japan
4)
Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-8555, Japan
(Received 25 April 2024 / Accepted 29 May 2024 / Published 9 July 2024)

Abstract

Tungsten (W) is one of the major impurities in ITER and future DEMO reactors. However, diagnosing ion density, temperature, and spatial distribution for tungsten ions in low charge states such as W17+-W27+ is difficult due to a lack of spectral line data. In this study, we observed tungsten Unresolved Transition Array (UTA) spectra around W20+ in Large Helical Device. Furthermore, the emission spectra of tungsten ions ranging from W19+-W23+ were also measured using Compact electron Beam Ion Trap (CoBIT). Two spectral peaks were detected in the CoBIT experimental setup. Subsequently, these peaks were theoretically identified as 5s-5p and 5p3/2-5d transitions using Flexible Atomic Code (FAC). The identified peaks are useful for impurity diagnostics of ITER edge plasma.


Keywords

tungsten spectra, impurity diagnostics, flexible atomic code, LHD, atomic process

DOI: 10.1585/pfr.19.1402022


References

  • [1] R.A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019).
  • [2] J. Clemson et al., AIP Conf. Proc. 1525, 78 (2013).
  • [3] P. Beiersdorfer et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144008 (2010).
  • [4] K. Asmussen et al., Nucl. Fusion 38, 967 (1998).
  • [5] R. Neu et al., J. Phys. B: At. Mol. Opt. Phys. 30, 5057 (1997).
  • [6] T. Pütterich et al., Plasma Phys. Control. Fusion 50, 085016 (2008).
  • [7] J. Yanagibayashi et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144013 (2010).
  • [8] T. Nakano et al., Nucl. Fusion 49, 115204 (2009).
  • [9] T. Nakano and The JT-60 Team, J. Nucl. Mater. 415, S327 (2011).
  • [10] G.J. van Rooij et al., J. Nucl. Mater. 438, S42 (2013).
  • [11] L. Zhang et al., Nucl. Inst. Methods Phys. Res. A 916, 169 (2019).
  • [12] T. Oishi et al., Atoms 9, 69 (2021).
  • [13] M.B. Chowdhuri et al., Plasma Fusion Res. 2, S1060 (2007).
  • [14] T. Oishi et al., Phys. Scr. 91, 025602 (2016).
  • [15] T. Oishi et al., Phys. Scr. 96, 025602 (2021).
  • [16] H.A. Sakaue et al., Phys. Rev. A 92, 012504 (2015).
  • [17] Priti et al., Atoms 11, 57 (2023).
  • [18] S. Liang et al., Rev. Sci. Instrum. 90, 093301 (2019).
  • [19] C.L. Yan et al., Phys. Rev. A 105, 032820 (2022).
  • [20] J. Bauche et al., Phys. Scr. 37, 659 (1988).
  • [21] A. Kramida et al., http://physics.nist.gov/asd for NIST Atomic Spectra Database (ver. 5.10).
  • [22] Y. Ralchenko, Plasma Fusion Res. 8, 2503024 (2013).
  • [23] C. Suzuki et al., J. Phys. B: At. Mol. Opt. Phys. 44, 175004 (2011).
  • [24] M.B. Chowdhuri et al., Rev. Sci. Instrum. 78, 023501 (2007).
  • [25] H.P. Summers, The ADAS User Manual, version 2.6 http://www.adas.ac.uk (2004).
  • [26] M.F. Gu, Astrophys. J. 582, 1241 (2003).
  • [27] W. Li et al., Phys. Rev. A 91, 062501 (2015).
  • [28] T. Pütterich et al., AIP Conf. Proc. 1545, 132 (2013).
  • [29] J. White et al., J. Appl. Phys. 98, 113301 (2005).