Plasma and Fusion Research

Volume 19, 1402017 (2024)

Regular Articles


Evaluation of the Electron Temperature of the Ablation Cloud for the Small-Size Hydrogen Pellet Using Paschen Series in Heliotron J
Akihiro IWATA, Shinichiro KADO1), Gen MOTOJIMA2), Taiichi SHIKAMA3), Minato MURAKUMO3), Atsuki MORI, Hiroyuki OKADA1), Takashi MINAMI1), Shinsuke OHSHIMA1), Shigeru INAGAKI1), Fumiyoshi KIN1), Shinji KOBAYASHI1), Akihiro ISHIZAWA, Yuji NAKAMURA, Shigeru KONOSHIMA1), Tohru MIZUUCHI1) and Kazunobu NAGASAKI1)
Graduate School of Energy Science, Kyoto University, Uji 611-0011, Japan
1)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
2)
National Institute for Fusion Science, Toki 509-5292, Japan
3)
Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
(Received 4 September 2023 / Accepted 16 February 2024 / Published 25 March 2024)

Abstract

We simultaneously measured the electron temperature (Te) and electron density (ne) using a low-dispersion near-infrared spectrometer in a small-size pellet ablation cloud in Heliotron J, a medium-sized helical-axis heliotron device. We applied the intensity ratio of the Paschen-α, β, and γ to determine Te based on the collisional-radiative model, which was fairly consistent with the partial local thermodynamic equilibrium (LTE) in the upper principal quantum numbers of 4, 5, and 6. For a typical pellet injection discharge, Te and ne were determined to be 0.9 eV and 4 × 1021 m−3, respectively. Our derived generalized empirical calibration curve demonstrates a weak influence of Te on ne evaluation, particularly in the range of 0.4 - 2.0 eV. Subsequently, we determined the region where the LTE is achieved for the Paschen series.


Keywords

pellet ablation cloud, near-infrared spectroscopy, collisional-radiative model, partial LTE, electron temperature measurement, Heliotron J

DOI: 10.1585/pfr.19.1402017


References

  • [1] P.B. Parks and R.J. Turnbull, Phys. Fluids 21, 1735 (1978).
  • [2] W. Houlberg et al., Nucl. Fusion 28, 595 (1988).
  • [3] M. Goto et al., Plasma Phys. Control. Fusion 49, 1163 (2007).
  • [4] G. Motojima et al., Rev. Sci. Instrum. 83, 093506 (2012).
  • [5] G. Motojima et al., Plasma Phys. Control. Fusion 61, 075014 (2019).
  • [6] A. Iwata et al., Rev. Sci. Instrum. 93, 113537 (2022).
  • [7] S. Kado et al., Rev. Sci. Instrum. 89, 10D129 (2018).
  • [8] K. Sawada and T. Fujimoto, J. Appl. Phys. 78, 2913 (1995).
  • [9] T. Fujimoto et al., J. Appl. Phys. 66, 2315 (1989).
  • [10] T. Fujimoto, Plasma Spectroscopy (Oxford University Press, USA, 2004).