Plasma and Fusion Research

Volume 19, 1402010 (2024)

Regular Articles


Spectroscopic Study of Molybdenum Impurity Generation in LHW Sustained Plasmas on TST-2 Spherical Tokamak
Yiming TIAN, Akira EJIRI, Naoto TSUJII, Yuting LIN, Kouji SHINOHARA, Seowon JANG, Yi PENG, Kotaro IWASAKI and Fumiya ADACHI
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
(Received 30 November 2023 / Accepted 4 January 2024 / Published 15 February 2024)

Abstract

Impurity generation mechanisms including RF sheath sputtering and heating from fast electrons were explored in LHW sustained plasmas on TST-2 spherical tokamak. Molybdenum impurity was measured with a high-resolution spectrometer and the heating effect on a molybdenum target plate was estimated with a fast camera system. The LHW power modulation experiment indicates that the RF sheath sputtering dominated impurity generation from the antenna limiters (molybdenum) under the current plasma parameters. In addition, the target plate insertion experiment shows that molybdenum atoms were released from the target when heated by fast electrons accelerated by LHW. Although the heating effect was negligible for the antenna limiters, it could become significant under higher plasma parameters or during longer pulses.


Keywords

lower hybrid current drive, impurity, RF sheath, fast electron

DOI: 10.1585/pfr.19.1402010


References

  • [1] Y-K. Peng and D. Strickler, Nucl. Fusion 26, 769 (1986).
  • [2] K. Ushigusa et al., Nucl. Fusion 29, 1052 (1989).
  • [3] D. Moreau and C. Gormezano, Plasma Phys. Control. Fusion 33, 1621 (1991).
  • [4] G. Tonon, Plasma Phys. Control. Fusion 35, A105 (1993).
  • [5] F. Liu et al., Nucl. Fusion 55, 123022 (2015).
  • [6] Y. Takase et al., Nucl. Fusion 53, 063006 (2013).
  • [7] T. Shinya et al., Nucl. Fusion 57, 036006 (2017).
  • [8] Y. Ko et al., Nucl. Fusion 63, 126015 (2023).
  • [9] H. Kohno et al., Phys. Plasmas 22, 072504 (2015); erratum: 23, 089901 (2016).
  • [10] J. Myra, J. Plasma Phys. 87, 905870504 (2021).
  • [11] J. Noterdaeme and G. Oost, Plasma Phys. Control. Fusion 35, 1481 (1993).
  • [12] V. Bobkov et al., Nucl. Mater. Energy 18, 131 (2019).
  • [13] L. Colas et al., Nucl. Fusion 62, 016014 (2022).
  • [14] A. Ejiri et al., Plasma Fusion Res. 17, 1402037 (2022).
  • [15] P. Jacquet et al., Nucl. Fusion 51, 103018 (2011).
  • [16] V. Fuchs et al., Phys. Plasmas 3, 4023 (1996).
  • [17] Y. Takase et al., Nucl. Fusion 41, 1543 (2001).
  • [18] M. Carlà, Am. J. Phys. 81, 512 (2013).
  • [19] S. Yajima et al., Nucl. Fusion 59, 066004 (2019).
  • [20] P. Chabert and N. Braithwaite, Physics of Radio-Frequency Plasmas (Cambridge University Press, Cambridge, 2011) p. 113.
  • [21] J. Rice et al., Plasma Fusion Res. 15, 2402009 (2020).
  • [22] H. Togashi et al., Plasma Fusion Res. 10, 1202082 (2015).
  • [23] J. Biersack and W. Eckstein, Appl. Phys. A 34, 73 (1984).
  • [24] W. Eckstein, Calculated Sputtering, Reflection and Range Values (IPP 9/132) (Max-Planck-Institut fär Plasmaphysik, Garching, 2002).
  • [25] T. Shinya, Non-Inductive Plasma Current Ramp-up on the TST-2 Spherical Tokamak Using the Lower Hybrid Wave (Doctoral dissertation, The University of Tokyo, 2015).
  • [26] Y. Yamamura and H. Tawara, At. Data Nucl. Data Tables 62, 149 (1996).
  • [27] D. D'Ippolito et al., Plasma Phys. Control. Fusion 33, 607 (1991).
  • [28] T. Yokota et al., Phys. Rev. Lett. 91, 265504 (2003).
  • [29] G.H. Vineyard, Rad. Effects 29, 245 (1976).