Plasma and Fusion Research

Volume 18, 2402031 (2023)

Regular Articles


Measurement of Radiated Power Using an InfraRed Imaging Video Bolometer System in the Upstream of GAMMA 10/PDX Divertor Simulation Plasma
Naoki SHIGEMATSU, Naomichi EZUMI, Kiyofumi MUKAI1,2), Takumi SETO, Takuma OKAMOTO, Kosuke TAKANASHI, Satoshi TAKAHASHI, Reina MIYAUCHI, Satoshi TOGO, Mafumi HIRATA, Junko KOHAGURA, Masayuki YOSHIKAWA, Ryutaro MINAMI, Yousuke NAKASHIMA and Mizuki SAKAMOTO
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI Toki 509-5292, Japan
(Received 9 January 2023 / Accepted 26 March 2023 / Published 12 May 2023)

Abstract

Plasma radiation intensity distribution plays a crucial role in the energy balance and impurity transport during plasma detachment. An InfraRed imaging Video Bolometer (IRVB) is a radiation distribution measurement system, that uses an infrared camera to measure the temperature distribution on a thin foil caused by plasma radiation. Herein, an IRVB measurement system is installed in the west plug/barrier cell of the GAMMA10/PDX, which is upstream of the divertor-simulated plasma. In the case of Ar injection, a clear difference is observed in the plasma radiation intensity depending on the incident gas pressure. However, during Ne injection, the difference in the plasma radiation intensity is not clear. Compared with the case of Ne, the radiation intensity is higher when Ar gas was injected.


Keywords

radiation, bolometer, IRVB, plasma detachment, divertor, D-module, GAMMA 10/PDX

DOI: 10.1585/pfr.18.2402031


References

  • [1] S. Takamura et al., Plasma Sources Sci. Technol. 11, A42 (2002).
  • [2] N. Ezumi et al., J. Nucl. Mater. 241-243, 349 (1997).
  • [3] A. Kallenbach et al., Plasma Phys. Control. Fusion 58, 045013 (2016).
  • [4] B.J. Peterson, Rev. Sci. Instrum. 71, 3696 (2000).
  • [5] K. Mukai et al., Nucl. Fusion 55, 083016(9pp) (2015).
  • [6] B.J. Peterson et al., Nucl. Mater. Energy 26, 100848 (2021).
  • [7] B.J. Peterson et al., Rev. Sci. Instrum. 79, 10E301 (2008).
  • [8] J. Jang et al., Curr. Appl. Phys. 18, 461 (2018).
  • [9] R. Sano et al., Rev. Sci. Instrum. 87, 053502 (2016).
  • [10] N. Ezumi et al., Nucl. Fusion 59, 066030 (2019).
  • [11] H. Gamo et al., Plasma Fusion Res. 16, 2402041 (2021).
  • [12] M. Sakamoto et al., Nucl. Mater. Energy 12, 1004 (2017).
  • [13] K. Nojiri et al., Nucl. Mater. Energy 12, 100691 (2019).
  • [14] Y. Nakashima et al., Fusion. Sci. Technol. 68, 28 (2015).
  • [15] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [16] B.J. Peterson et al., Rev. Sci. Instrum. 74, 2040 (2003).
  • [17] R. Sano et al., Plasma Fusion Res. 7, 2405039 (2012).
  • [18] R. Sano et al., Plasma Fusion Res. 6, 2406076 (2011).
  • [19] K. Mukai et al., Plasma Fusion Res. 9, 3402037 (2014).
  • [20] K. Mukai et al., Rev. Sci. Instrum. 92, 063521 (2021).
  • [21] R. Minami et al., Rev. Sci. Instrum. 85, 11D807 (2014).