Plasma and Fusion Research

Volume 18, 2402016 (2023)

Regular Articles


Large Volume and Fast Response Gamma Ray Diagnostic in the Large Helical Device
Kunihiro OGAWA1,2), Siriyaporn SANGAROON3) and Mitsutaka ISOBE1,2)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Mahasarakham University, 20 41 Kham Riang, Kantharawichai District, Maha Sarakham 44150, Thailand
(Received 17 November 2022 / Accepted 7 February 2023 / Published 5 April 2023)

Abstract

A large volume and fast response gamma ray diagnostic based on the LaBr3(Ce) scintillator was installed to obtain the gamma ray spectrum in the Large Helical Device (LHD) for understanding energetic ion confinement. The advantages of the LaBr3(Ce) scintillator are relatively sensitive to gamma rays due to its relatively heavy weight density of 5.3 g/cc, high counting operation because of a relatively short pulse width of ∼100 ns, and relatively better energy resolution of ∼3%. The gamma ray diagnostic was installed at the outboard side of LHD. The radiation shielding for the LaBr3(Ce) detector was designed to avoid unwanted signals due to stray neutrons and gamma rays using the three-dimensional radiation transport calculation MCNP6. In-situ energy calibration of the LaBr3(Ce) detector was performed using 60Co and 137Cs gamma ray sources. We surveyed a neutron effect on the LaBr3(Ce) detector in an electron-cyclotron-heated deuterium plasma discharge. The pulse counting rate of LaBr3(Ce) detector under the total neutron emission rate of 2×1011 n/s was 110 kcps. Therefore, the LaBr3(Ce) detector is expected to be utilized in most of ion cyclotron resonance frequency (ICRF) discharges, where the total neutron emission rate of ∼1011 n/s. We plan to measure the gamma ray spectrum in deuterium ICRF discharges.


Keywords

Large Helical Device, nuclear fusion, LaBr3(Ce) detector, gamma ray diagnostic

DOI: 10.1585/pfr.18.2402016


References

  • [1] F.E. Cecil et al., Nucl. Instrum. Meth. 175, 293 (1980).
  • [2] S.S. Medley et al., Rev. Sci. Instrum. 56, 975 (1985).
  • [3] F.E. Cecil and F.J. Wilkinson, III, Phys. Rev. Lett. 53, 767 (1984).
  • [4] V.G. Kiptily et al., Plasma Phys. Control. Fusion 48, R59 (2006).
  • [5] S.S. Medley et al., Rev. Sci. Instrum. 61, 3226 (1990).
  • [6] F.E. Cecil and S.S. Medley, Nucl. Instrum. Meth. in Physics Research Section A 271, 628 (1988).
  • [7] S.S. Medley et al., Rev. Sci. Instrum. 63, 4857 (1992).
  • [8] E.D. Fredrickson et al., Nucl. Fusion 55, 013006 (2015).
  • [9] A. Shevelev et al., Nucl. Fusion 53, 123004 (2013).
  • [10] V.G. Kiptily et al., Phys. Rev. Lett. 93, 115001 (2004).
  • [11] M. Nocente et al., Rev. Sci. Instrum. 87, 11E714 (2016).
  • [12] I.N. Chugunov et al., Nucl. Fusion 51, 083010 (2011).
  • [13] V.G. Kiptily et al. Tech. Phys. 43, 471 (1998).
  • [14] I.N. Chugunov et al., Instrum. Exp. Tech. 51, 166 (2008).
  • [15] V.G. Kiptily et al., Nucl. Fusion 58, 082009 (2018).
  • [16] A.J.H. Donné, A.E. Costley and A.W. Morris, Nucl. Fusion 52, 074015 (2012).
  • [17] V.G. Kiptily, Nucl. Fusion 55, 023008 (2015).
  • [18] F.E. Cecil et al., Rev. Sci. Instrum. 61, 3223 (1990).
  • [19] T. Nishitani et al., Rev. Sci. Instrum. 72, 877 (2001).
  • [20] L.W. Packer et al., Nucl. Fusion 58, 096013 (2018).
  • [21] K. Nishimura et al., Plasma Fusion Res. 3, S1024 (2008).
  • [22] T. Nishitani et al., Prog. Nucl. Sci. Technol. 6, 48 (2019).
  • [23] S. Yoshihashi et al., Plasma Fusion Res. 17, 2405096 (2022).
  • [24] T. Tanaka et al., Plasma Fusion Res. 14, 3405162 (2019).
  • [25] M. Isobe et al., IEEE Trans. Plasma Sci. 46, 2050 (2018).
  • [26] M. Isobe et al., Nucl. Fusion 58, 082004 (2018).
  • [27] K. Ogawa et al., Nucl. Fusion 59, 076017 (2019).
  • [28] K. Ogawa et al., Plasma Fusion Res. 16, 1102023 (2021).
  • [29] M. Osakabe et al., Fusion Sci. Technol. 72, 199 (2017).
  • [30] S. Kamio et al., Nucl. Fusion 62, 016004 (2022).
  • [31] T. Muto et al., Nucl. Fusion 47, 1250 (2007).
  • [32] H. Matsuura et al., Plasma Fusion Res. 11, 1403105 (2016).
  • [33] K. Ogawa et al., Fusion Sci. Technol. 78, 175 (2022).
  • [34] C. Cazzaniga et al., Rev. Sci. Instrum. 84, 123505 (2013).
  • [35] J.T. Goorley, “MCNP6.1.1-Beta Release Notes”, LA-UR-14-24680 (2014).
  • [36] K. Ogawa et al., Rev. Sci. Instrum. 89, 113509 (2018).
  • [37] K. Ogawa et al., Nucl. Fusion 57, 086012 (2017).
  • [38] H. Nakanishi et al., Fusion Sci. Technol. 58, 445 (2010).
  • [39] R. Seki et al., Plasma Fusion Res. 15, 1202088 (2020).