Plasma and Fusion Research

Volume 18, 2401022 (2023)

Regular Articles


Numerical Simulations of Hall MHD Turbulence with Magnetization
Hideaki MIURA and Fujihiro HAMBA1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
1)
Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
(Received 6 January 2023 / Accepted 20 February 2023 / Published 23 May 2023)

Abstract

Direct numerical simulations (DNS) and large eddy simulations (LES) of homogeneous Hall magnetohydrodynamic (MHD) simulations are carried out to verify the properties of a sub-grid-scale (SGS) model which has been developed for LES recently. LES with the new SGS model reproduces one-dimensional spectra of DNS. It is also shown that the probability density functions (PDFs) of the current density components of DNS and LES in the grid-scale coincide with each other by an appropriate normalization. We verify by this numerical study that our improved SGS model is applicable to homogeneous Hall MHD turbulence. We also find that the difference in the deviation of the current density components is smaller in the MHD-scale of LES than in that of DNS. These results provide a new insight to study the spectral anisotropy of turbulence, especially in relation to the sub-ion-scale.


Keywords

Hall MHD turbulence, uniform magnetic field, SGS model, verification

DOI: 10.1585/pfr.18.2401022


Publisher's Note

Personal data in this article's fulltext PDF has been blacked out for a security reason.
(Date of correction: July 10, 2023)



References

  • [1] P.S. Iroshnikov, Sov. Astron. 7, 566 (1964).
  • [2] R.H. Kraichnan, Phys. Fluids 8, 1385 (1965).
  • [3] P. Goldreich and S. Sridhar, ApJ 435, 680 (1997).
  • [4] W.H. Matthaeus et al., Geophys. Res. Lett. 30, GL017949 (2003).
  • [5] P. Mininni, A. Alexakis and A. Pouquet, J. Plasma Phys. 73, 377 (2007).
  • [6] S. Galtier, Phys. Rev. E 77, 015302 (2008).
  • [7] D. Hori and H. Miura, Plasma Fusion Res. 3, S1053 (2008).
  • [8] R. Meyrand and S. Galtier, Phys. Rev. Lett. 109, 194501 (2012).
  • [9] H. Miura and K. Araki, Plasma Phys. Control. Fusion 55, 014012 (2013).
  • [10] H. Miura and K. Araki, Phys. Plasmas 21, 072313 (2014).
  • [11] H. Miura, K. Araki and F. Hamba, J. Comput. Phys. 316, 385 (2016).
  • [12] H. Miura, F. Hamba and A. Ito, Nucl. Fusion 57, 076034 (2017).
  • [13] H. Miura and F. Hamba, J. Comput. Phys. 448, 110692 (2022).
  • [14] D. Pekurovsky, SIAM J. Sci. Comput. 34, C192 (2012).
  • [15] D. Takahashi, http://www.ffte.jp/ (2014); D. Takahashi, Fast Fourier Transform Algorithms for Parallel Computers, Springer Nature Singapore Pre Ltd. (2019).
  • [16] F. Hamba and M. Tsuchiya, Phys. Plasmas 17, 012301 (2010).
  • [17] A. Yoshizawa and N. Yokoi, Phys. Plasmas 5, 2902 (1998).
  • [18] W.H. Matthaeus et al., J. Geophys. Res. 101, 7619 (1996).
  • [19] L. Yang et al., ApJ 920, 14 (2021).
  • [20] J. Zhang et al., ApJ 924, L21 (2022).