Plasma and Fusion Research

Volume 18, 2105073 (2023)

Review Articles

Control and Application of Ultrahigh Hydrogen Flux in Materials
Makoto I. KOBAYASHI1,2), Yuji HATANO3), Masanori HARA3), Yasuhisa OYA4), Yuji YAMAUCHI5), Teppei OTSUKA6) and Takuya NAGASAKA1,2)
National Institute for Fusion Science, National Institutes of Natural Sciences, Gifu 509-5292, Japan
The Graduate University for Advanced Studies, SOKENDAI, Gifu 509-5292, Japan
Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555, Japan
Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
(Received 21 February 2023 / Accepted 3 July 2023 / Published 17 August 2023)


This paper reviews the control and the application of ultrahigh hydrogen flux in materials for fusion reactors and future hydrogen societies. Ultrahigh hydrogen flux can be efficiently formed by the combination of hydrogen plasma exposure and the surface modification method, similar to super-permeation. The paper discusses the possibility of the fabrication of oversaturated hydrogen storage materials and the effective tritium removal from the components using the ultrahigh hydrogen flux.


hydrogen, tritium, super-permeation, hydrogen storage, tritium decontamination

DOI: 10.1585/pfr.18.2105073


  • [1] M. Siccinio, W. Biel, M. Cavedon, E. Fable, G. Federici, F. Janky, H. Lux, F. Maviglia, J. Morris, F. Palermo, O. Sauter, F. Subba and H. Zohm, “DEMO physics challenges beyond ITER”, Fusion Eng. Des. 156, 111603 (2020).
  • [2] Y. Iwai, T. Yamanishi, H. Nakamura, K. Isobe, M. Nishi and R.S. Willms, “Numerical Estimation Method of the Hydrogen Isotope Inventory in the Hydrogen Isotope Separation System for Fusion Reactor”, J. Nucl. Sci. Technol. 39, 661 (2002).
  • [3] Y. Iwai, T. Yamanishi, S. O'hira, T. Suzuki, W.M. Shu and M. Nishi, “H-D-T cryogenic distillation experiments at TPL/JAERI in support of ITER”, Fusion Eng. Des. 61-62, 553 (2002).
  • [4] Z. Liang, X. Xiao, J. Qi, H. Kou and L. Chen, “ZrCo-based hydrogen isotopes storage alloys: A review”, J. Alloys Compd. 932, 167552 (2023).
  • [5] M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard and E. Tada, “The ITER tritium systems”, Fusion Eng. Des. 82, 472 (2007).
  • [6] G. Gervasini and F. Reiter, “Hydrogen isotopes transport in fusion reactor first wall materials”, J. Nucl. Mater. 212-215, 1379 (1994).
  • [7] G. Gervasini and F. Reiter, “Tritium-material interaction in various first wall materials”, J. Nucl. Mater. 155-157, 754 (1998).
  • [8] F. Reiter, J. Camposilvan, M. Caorlin, G. Saibene and R. Sartori, “Interaction of hydrogen isotopes with stainless steel 316L”, Appl. Radiat. Isot. 36, 589 (1985).
  • [9] W.M. Shu, E. Wakai and T. Yamanishi, “Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma”, Nucl. Fusion 47, 201 (2007).
  • [10] M. Kobayashi, M. Shimada, Y. Hatano, T. Oda, B. Merrill, Y. Oya and K. Okuno, “Deuterium trapping by irradiation damage in tungsten induced by different displacement processes”, Fusion Eng. Des. 88, 1749 (2013).
  • [11] V.Kh. Alimov, W.M. Shu, J. Roth, S. Lindig, M. Balden, K. Isobe and T. Yamanishi, “Temperature dependence of surface topography and deuterium retention in tungsten exposed to low-energy, high-flux D plasma”, J. Nucl. Mater. 417, 572 (2011).
  • [12] J. Roth, T. Schwarz-Selinger, V.Kh. Alimov and E. Markina, “Hydrogen isotope exchange in tungsten: Discussion as removal method for tritium”, J. Nucl. Mater. 432, 341 (2013).
  • [13] M. Nagumo, “Fundamentals of Hydrogen Embrittlement”, Springer; Softcover reprint of the original 1st ed. 2016.
  • [14] P.C. Okonkwo, E.M. Barhoumi, I.B. Belgacem, I.B. Mansir, M. Aliyu, W. Emori, P.C. Uzoma, W.H. Beitelmal, E. Akyüz, A.B. Radwan and R.A. Shakoor, “A focused review of the hydrogen storage tank embrittlement mechanism process”, Int. J. Hydrog. Energy, online available 2023.
  • [15] X. Li, J. Yin, J. Zhang, Y. Wang, X. Song, Y. Zhang and X. Ren, “Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review”, J. Mater. Sci. Technol. 122, 20 (2022).
  • [16] S. Laliberté-Riverin and M. Brochu, “A novel approach for quantifying hydrogen embrittlement using side-grooved CT samples”, Eng. Fract. Mech. 265, 108324 (2022).
  • [17] A.O. Myhre, A.B. Hagen, B. Nyhus, V. Olden, A. Alvaro and A. Vinogradov, “Hydrogen Embrittlement Assessment of Pipeline Materials Through Slow Strain Rate Tensile Testing”, Procedia Structural Integrity 42, 935 (2022).
  • [18] Y. Fukai, “The Metal-Hydrogen System: Basic Bulk Properties”, Springer Science & Business Media, 2006.
  • [19] T.J. Dolan and R.A. Anderl, “Assessment of Database for Interaction of Tritium with ITER Plasma Facing Materials”, EGG-FSP-11348, ITER/93/US/TUSA-10.
  • [20] F. Reiter, K.S. Forcey and G. Gerasini, “A compilation of tritium-material interaction parameter in fusion reactor materials”, Commission of the European communities, CD-NA-15217-EN-C.
  • [21] D.S. Dos Santos and P.E.V. De Miranda, “Hydrogen Solubility in Amorphous and Crystalline Materials”, Int. J. Hydrogen Energy 23, 1011 (1998).
  • [22] J. Crank, The Mathematics of Diffusion, 2nd Ed. (Clarendon, Oxford, 1975).
  • [23] Ogorodnikova, “Surface effects on plasma-driven tritium permeation through metals”, J. Nucl. Mater. 290-293, 459 (2001).
  • [24] T. Shiraishi, M. Nishikawa and T. Fukumatsu, “Permeation of multi-component hydrogen isotopes through nickel”, J. Nucl. Mater. 254, 205 (1998).
  • [25] Yu. Dolinski, I. Lyasota, A. Shestakov, Yu. Repritsev and Yu. Zouev, “Heavy hydrogen isotopes penetration through austenitic and martensitic steels”, J. Nucl. Mater. 283-287, 854 (2000).
  • [26] H. Nakamura, T. Hayashi, S. O'hira, M. Nishi and K. Okuno, “Implantation driven permeation behavior of deuterium through stainless steel type 316L”, J. Nucl. Mater. 258-263, 1050 (1998).
  • [27] Yu. Gasparyan, M. Rasinski, M. Mayer, A. Pisarev and J. Roth, “Deuterium ion-driven permeation and bulk retention in tungsten”, J. Nucl. Mater. 417, 540 (2011).
  • [28] Ch. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann, A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Müller, V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama, R. Stieglitz, T. Weber, S.Wurster, J.-H. You and Z. Zhou, “Development of advanced high heat flux and plasma-facing materials”, Nucl. Fusion 57, 092007 (2017).
  • [29] G.W Hollenberg, E.P Simonen, G Kalinin and A Terlain, “Tritium/hydrogen barrier development”, Fusion Eng. Des. 28, 190 (1995).
  • [30] T. Chikada, Ceramic Coatings for Fusion Reactors, Comprehensive Nuclear Materials, 2nd Edition (Elsevier, 2020).
  • [31] A. Zuettel, “Materials for Hydrogen Storage”, Materials Today 6, 24 (2003).
  • [32] L. Schlapbach and A. Zuttel, “Hydrogen-storage materials for mobile applications”, Nature 414, 353 (2001).
  • [33] Y. Huang, Y. Cheng and J. Zhang, “A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications”, Ind. Eng. Chem. Res. 60, 2737 (2021).
  • [34] H. Uesugi, T. Sugiyama, I. Nakatsugawa and T. Ito, “Production of hydrogen storage material MgH2 and its application”, J. Jpn. Inst. Light Metals 60, 615 (2010).
  • [35] L.E. Klebanoff, K.C. Ott, L.J. Simpson, K. O'Malley and N.T. Stetson, “Accelerating the Understanding and Development of Hydrogen Storage Materials: A Review of the Five-Year Efforts of the Three DOE Hydrogen Storage Materials Centers of Excellence”, Metall. Mater. Trans. B, 1, 81 (2014).
  • [36] Y. Ueda, K. Schmid, M. Balden, J.W. Coenen, Th. Loewenhoff, A. Ito, A. Hasegawa, C. Hardie, M. Porton and M. Gilbert, “Baseline high heat flux and plasma facing materials for fusion”, Nucl. Fusion 57, 092006 (2017).
  • [37] M. Rieth, R. Doerner, A. Hasegawa, Y. Ueda and M.Wirtz, “Behavior of tungsten under irradiation and plasma interaction”, J. Nucl. Mater. 519, 334 (2019).
  • [38] Y. Hatano, M. Shimada, T. Otsuka, Y. Oya, V.Kh. Alimov, M. Hara, J. Shi, M. Kobayashi, T. Oda, G. Cao, K. Okuno, T. Tanaka, K. Sugiyama, J. Roth, B. Tyburska-Püschel, J. Dorner, N. Yoshida, N. Futagami, H. Watanabe, M. Hatakeyama, H. Kurishita, M. Sokolov and Y. Katoh, “Deuterium trapping at defects created with neutron and ion irradiations in tungsten”, Nucl. Fusion 53, 073006 (2013).
  • [39] T. Oda, D. Zhu and Y. Watanabe, “Kinetic Monte Carlo simulation on influence of vacancy on hydrogen diffusivity in tungsten”, J. Nucl. Mater. 467, 439 (2015).
  • [40] Y.-W. You, X.-S. Kong, X.-B. Wu, Y.-C. Xu, Q.F. Fang, J. L. Chen, G.-N. Luo, C.S. Liu, B.C. Pan and Z.Wang, “Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals”, AIP Advances 3, 012118 (2013).
  • [41] N. Fernandez, Y. Ferroa and D. Kato, “Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models”, Acta Materialia 94, 307 (2015).
  • [42] K. Ohsawa, J. Goto, M. Yamakami, M. Yamaguchi and M. Yagi, “Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles”, Phys. Rev. B 82, 184117 (2010).
  • [43] K. Ohsawa, F. Nakamori, Y. Hatano and M. Yamaguchi, “Thermodynamics of hydrogen-induced superabundant vacancy in tungsten”, J. Nucl. Mater. 458, 187 (2015).
  • [44] L. Bukonte, T. Ahlgren and K. Heinola, “Thermodynamics of impurity-enhanced vacancy formation in metals”, J. Appl. Phy. 121, 045102 (2017).
  • [45] Y. Fukai, “Superabundant Vacancies Formed in Metal-Hydrogen Alloys”, Phys. Scr. T103, 11 (2003).
  • [46] E. Hayashi, Y. Kurokawa and Y. Fukai, “Hydrogen-Induced Enhancement of Interdiffusion in Cu-Ni Diffusion Couples”, Phys. Rev. Lett. 80, 5588 (1998).
  • [47] Y. Fukai and N. Ōkuma, “Evidence of Copious Vacancy Formation in Ni and Pd under a High Hydrogen Pressure”, Jpn. J. Appl. Phys. 32, 1256 (1993).
  • [48] Y. Fukai and N. Ōkuma, “Formation of Superabundant Vacancies in Pd Hydride under High Hydrogen Pressures”, Phys. Rev. Lett. 73, 1640 (1994).
  • [49] Y. Fukai, Y. Shizuku and Y. Kurokawa, “Superabundant vacancy formation in Ni–H alloys”, J. Alloys Compd. 329, 195 (2001).
  • [50] Y. Fukai and M. Mizutani, “Phase Diagram and Superabundant Vacancy Formation in Cr–H Alloys”, Materials Transactions 43, 1079 (2002).
  • [51] Y. Fukai and M. Mizutani, “The Phase Diagram of Mo–H Alloys under High Hydrogen Pressure”, Materials Transactions 44, 1359 (2003).
  • [52] N. Ehrlin, C. Bjerkén and M. Fisk, “Cathodic hydrogen charging of Inconel 718”, Materials Science 3, 1350 (2016).
  • [53] R.N. Singh, R. Kishore, S. Mukherjee, S. Roychowdhury, D. Srivastava, T.K. Sinha, P.K. De, S. Banerjee, R. Kameswaran, S.S. Sheelvantra and B. Gopalan, “Hydrogen Charging, Hydrogen Content Analysis and Metallographic Examination of Hydride in Zirconium Alloys”, BARC report, BARC-2003-E-034.
  • [54] M. Shimada, Y. Hatano, P. Calderoni, T. Oda, Y. Oya, M. Sokolov, K. Zhang, G. Cao, R. Kolasinski and J.P. Sharpe, “First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE”, J. Nucl. Mater. 415, S667 (2011).
  • [55] M. Shimada, G. Cao, T. Otsuka, M. Hara, M. Kobayashi, Y. Oya and Y. Hatano, “Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten”, Nucl. Fusion 55, 013008 (2015).
  • [56] M. Shimada, Y. Oya, W.R. Wampler, Y. Yamauchi, C.N. Taylor, L.M. Garrison, D.A. Buchenauer and Y. Hatano, “Deuterium retention in neutron-irradiated single-crystal tungsten”, Fusion Eng. Des. 136, 1161 (2018).
  • [57] G.J. van Rooij, V.P. Veremiyenko, W.J. Goedheer, B. de Groot, A.W. Kleyn, P.H.M. Smeets, T.W. Versloot, D.G. Whyte, R. Engeln, D.C. Schram and N.J. Lopes Cardozo, “Extreme hydrogen plasma densities achieved in a linear plasma generator”, Appl. Phys. Lett. 90, 121501 (2007).
  • [58] Y. Hatano, A. Livshits, Y. Nakamura, A. Busnyuk, V. Alimov, C. Hiromi, N. Ohyabu and K. Watanabe, “Influence of oxygen and carbon on performance of superpermeable membranes”, Fusion Eng. Des. 81, 771 (2006).
  • [59] A.I. Livshits, M.E. Notkin, A.A. Samartsev and M.N. Solovyov, “Interactions of low energy hydrogen ions with niobium: effects of non-metallic overlayers on reemission, retention and permeation”, J. Nucl. Mater. 233-237, 1113 (1996).
  • [60] C. Nishimura, M. Komaki and M. Amano, “Hydrogen Permeation Characteristics of Vanadium-Nickel Alloys”, Mater. Trans. JIM 32, 501 (1991).
  • [61] R.A. Anderl, M.R. Hankins, G.R. Longhurst and R.J. Pawelko, “Deuterium transport in Cu, CuCrZr, and Cu/Be”, J. Nucl. Mater. 266-269, 761 (1999).
  • [62] Yu.M. Gasparyan, A.V. Golubeva, M. Mayer, A.A. Pisarev and J. Roth, “Ion-driven deuterium permeation through tungsten at high temperatures”, J. Nucl. Mater. 390-391, 606 (2009).
  • [63] Y. Ueda, H.T. Lee, H.Y. Peng and Y. Ohtsuka, “Deuterium permeation in tungsten by mixed ion irradiation”, Fusion Eng. Des. 87, 1356 (2012).
  • [64] DOE: Materials-Based Hydrogen Storage,
  • [65] J. Graetz, “Metastable Metal Hydrides for Hydrogen Storage”, ISRN Materials Science 863025 (2012).
  • [66] W. Su, F. Zhao, L. Ma, R. Tang, Y. Dong, G. Kong, Y. Zhang, S. Niu, G. Tang, Y. Wang, A. Pang W. Li and L. Wei, “Synthesis and Stability of Hydrogen Storage Material Aluminum Hydride”, Materials 14, 2898 (2021).
  • [67] Z. El Sayah, R. Brahmi, R. Beauchet, Y. Batonneau and C. Kappenstein, “Synthesis, characterization and treatment of alane (aluminium hydride, AlH3)”, 7th European Conference for Aeronautics and Space Sciences (EUCASS).
  • [68] S.M. Myers, P.M. Richards, W.R. Wampler and F. Besenbacher, “Ion-beam studies of hydrogen-metal interactions”, J. Nucl. Mater. 165, 9 (1989).
  • [69] W. Möller, F. Besenbacher and J. Bottiger, “Saturation and isotope mixing during low-temperature implantations of hydrogen into metals”, Appl. Phys. A 27, 19 (1982).
  • [70] H. Saitoh, Y. Sakurai, A. Machida, Y. Katayama and K. Aoki, “In situ X-ray diffraction measurement of the hydrogenation and dehydrogenation of aluminum and characterization of the recovered AlH3”, J. Phys.: Conf. Series 215, 012127 (2010).
  • [71] C. Bellecci, P. Gaudio, I. Lupelli, A. Malizia, M.T. Porfiri, R. Quaranta and M. Richetta, “Loss of vacuum accident (LOVA): Comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation”, Fusion Eng. Des. 86, 330 (2011).
  • [72] T. Honda, H.-W. Bartels, B. Merrill, T. Inabe, D. Petti, R. Moore and T. Okazaki, “Analyses of loss of vacuum accident (LOVA) in ITER”, Fusion Eng. Des. 47, 361 (2000).
  • [73] J. Roth, T. Schwarz-Selinger, V.Kh. Alimov and E. Markina, “Hydrogen isotope exchange in tungsten: Discussion as removal method for tritium”, J. Nucl. Mater. 432, 341 (2013).
  • [74] S. Markelj, A. Založnik, T. Schwarz-Selinger, O.V. Ogorodnikova, P. Vavpetič, P. Pelicon and I. Čadež, “In situ NRA study of hydrogen isotope exchange in self-ion damaged tungsten exposed to neutral atoms”, J. Nucl. Mater. 469, 133 (2016).
  • [75] P. Andrew, P.D. Brennan, J.P. Coad et al., “Tritium retention and clean-up in JET,” Fusion Eng. Des. 47, 233 (1999).
  • [76] Y. Torikai, D. Murata, R.-D. Penzhorn, K. Akaishi, K. Watanabe and M. Matsuyama, “Migration and release behavior of tritium in SS316 at ambient temperature”, J. Nucl. Mater. 363-365, 462 (2007).
  • [77] R.A. Anderl, D.F. Holland, G.R. Longhurst, R.J. Pawelko, C.L. Trybus and C.H. Sellers, “Deuterium Transport and Trapping in Polycrystalline Tungsten”, Fusion Technology 21, 745 (1992).
  • [78] M.I. Kobayashi, M. Shimada, C.N. Taylor, Y. Nobuta, Y. Hatano and Y. Oya, “Numerical analysis of deuterium migration behaviors in tungsten damaged by fast neutron by means of gas absorption method”, Fusion Eng. Des. 168, 112635 (2021).
  • [79] Y. Seki, K. Yamada and H. Kawasaki, “Valuation of Decay Heat in Fusion Experimental Reactor”, J. Nucl. Sci. Technol. 21, 727 (1984).