Plasma and Fusion Research

Volume 18, 1406029 (2023)

Regular Articles


Low Electric Field Drift Tube Ion Mobility Analysis for Atmospheric Pressure Plasma
Keith Nealson M. PENADO, Allen Vincent B. CATAPANG and Motoi WADA
Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
(Received 18 February 2023 / Accepted 14 March 2023 / Published 27 April 2023)

Abstract

A low voltage compact ion mobility spectrometer type charged particle analyzer is being investigated to test the performance for diagnostics of ion/electron transport in an atmospheric pressure environment. The 44 mm diameter, 53 mm long device consists of a mesh gated shutter, a 35 mm long drift region, and an end-plate detector. By applying a cyclic positive bias followed by a negative bias to the shutter region, subsequent attraction and expulsion of charged species is observed with the applied voltage less than 100 V. Mesh size dependence of the shutter gated current at the detector shows that across 0, 30, 100, and 200 mesh sizes, the 30 mesh size realized the transport of the most number of ions towards the detector. This mesh size also presents a well-defined current-time derivative which allows the measurement of ion mobilities in electric fields with the intensity less than 33.3 V/cm. Analysis of peaks observed after the onset of the positive phase shows the presence of O+ ions in the swarm with a reported experimental mobility of K0 = 2.97 cm2/Vs.


Keywords

ion mobility spectrometry, plasma diagnostics, atmospheric pressure plasma

DOI: 10.1585/pfr.18.1406029


References

  • [1] R.G. Ewing, D.A. Atkinson, G.A. Eiceman and G.J. Ewing, Talanta 54, 515 (2001).
  • [2] M. Makinen, M. Nousiainen and M. Sillanpaa, Mass Spec-trom. Rev. 30, 940 (2011).
  • [3] J.R. Verkouteren and J.L. Staymates, Forensic Sci. 206, 190 (2010).
  • [4] G.A. Eiceman, E.G. Nazarov, B. Tadjikov and R.A. Miller, Field Analyt. Chem. Technol. 4, 297 (2000).
  • [5] W. Vautz, D. Zimmermann, M. Hartmann, J.I. Baumbach, J. Nolte and J. Jung, Food Addit. Contam. 11, 1064 (2006).
  • [6] L.A. Viehland and E.A. Mason, Ann. Phys. 91, 499 (1975).
  • [7] L.A. Viehland and E.A. Mason, At. Data Nucl. Data Tables 60, 37 (1995).
  • [8] A.A. Shvartsburg and R.D. Smith, Anal. Chem. 80, 9699 (2008).
  • [9] K. Giles, S.D. Pringle, K.R. Worthington, D. Little, J.L. Wildgoose and R.H. Bateman, Rapid. Comm. Mass Spectrom. 18, 2401 (2004).
  • [10] D.R. Hernandez, J.D. DeBord, M.E. Ridgeway, D.A. Kaplan, M.A. Park and F.F. Lima, Analyst 139, 1913 (2014).
  • [11] F.A. Fernandez-Lima, D.A. Kaplan and M.A. Park, Rev. Sci. Instrum. 82, 126106 (2011).
  • [12] I.A. Buryakov, E.V. Krylov, E.G. Nazarov and U. Kh. Rasulev, Int. J. Mass Spectrom. Ion Processes 128, 143 (1993).
  • [13] D.C. Collins and M.L. Lee, Anal. Bional. Chem. 372, 66 (2002).
  • [14] N.E. Bradbury and R.A. Nielsen, Phys. Rev. 49, 388 (1936).
  • [15] A.M. Tyndall and C.F. Powell, Proc. R. Soc. Lond. A 129, 162 (1930).
  • [16] H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason and L.A. Viehland, At. Data Nucl. Data Tables 17, 177 (1976).
  • [17] M.C.C. Lacdan and M. Wada, Plasma Fusion Res. 11, 2401015 (2016).
  • [18] T.C.O. Haver, Anal. Proc. 19, 22 (1982).
  • [19] Y.P. Raizer, Gas Discharge Physics (Springer, Verlag Berlin Heidelberg, 1991) p.20.
  • [20] Y. Kim, J. Jeong, G. Han, D. Jin, J. Kim and G. Cho, Plasma diffusion in the atmospheric pressure plasma jets (2011 Abstracts IEEE International Conference on Plasma Science, Chicago, IL, 2011) p.1-1.
  • [21] M. Suzuki and A. Kanzawa, Kagaku Kogaku Ronbunshu 4, 381 (1978) [In Japanese].
  • [22] A. Kramida, Y. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver 5.10). (NIST, Gaithersburg, 2022).
  • [23] N.S. Braithwaite, Plasma Sources Sci. Technol. 9, 517 (2000).