Plasma and Fusion Research

Volume 18, 1406023 (2023)

Regular Articles


The Buncher and the Magnetic Lens for the LINAC Based Low Energy Positron Beams at AIST
Hiroyuki HIGAKI, Koji MICHISHIO1), Akira ISHIDA2) and Nagayasu OSHIMA1)
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
1)
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
2)
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
(Received 15 December 2022 / Accepted 28 February 2023 / Published 27 April 2023)

Abstract

A buncher and a magnetic lens were introduced to improve the beam flux density of a pulsed positron beam extracted from the low energy positron accumulator at National Institute of Advanced Industrial Science and Technology (AIST). The buncher made the pulse width ∼ 1/4 and the magnetic lens reduced the beam cross section ∼ 1/9, which resulted in about 36 times increase in the beam flux density. Possible applications for electron-positron plasma experiments are also discussed.


Keywords

low energy positron beam, beam bunching, beam focusing, low energy positron plasma, electron-positron plasma

DOI: 10.1585/pfr.18.1406023


References

  • [1] P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988).
  • [2] J.R. Danielson, D.H.E. Dubin, R.G. Greaves and C.M. Surko, Rev. Mod. Phys. 87, 247 (2015).
  • [3] N.C. Hurst, J.R. Danielson, C.J. Baker and C.M. Surko, Phys. Plasmas 26, 013513 (2019).
  • [4] S. Niang, M. Charlton, J.J. Choi et al., Acta Phys. Pol. A 130, 164 (2020).
  • [5] H. Higaki, K. Michishio, K. Hashidate, A. Ishida and N. Oshima, Appl. Phys. Express 13, 066003 (2020).
  • [6] P. Blumer, M. Charlton, M. Chung et al., Nucl. Instrum. Methods Phys. Res. A 1040, 167263 (2022).
  • [7] B.E. O’Rourke, N. Oshima, A. Kinomura and R. Suzuki, Jpn. J. Appl. Phys. Conf. Proc. 2, 011304 (2014).
  • [8] H. Higaki, C. Kaga, K. Nagayasu et al., AIP Conf. Proc. 1668, 040005 (2015).
  • [9] T.J. Murphy and C.M. Surko, Phys. Rev. A 46, 5696 (1992).
  • [10] R. Suzuki, T. Ohdaira, A. Uedono et al., Jpn. J. Appl. Phys. 73, Pt.1, 4636 (1998).
  • [11] K. Michishio, H. Higaki, A. Ishida and N. Oshima, New J. Phys. 24, 123039 (2022).
  • [12] N. Oshima, R. Suzuki, T. Ohdaira et al., J. Appl. Phys. 103, 094916 (2008).
  • [13] K. Michishio, L. Chiari, F. Tanaka, N. Oshima and Y. Nagashima, Rev. Sci. Instrum. 90, 023305 (2019).
  • [14] A.P. Jr. Mills, Appl. Phys. 22, 273 (1980).
  • [15] R.G. Greaves and J. Moxom, AIP Conf. Proc. 692, 140 (2003).
  • [16] E.V. Stenson, J. Horn-Stanja, M.R. Stoneking and T. Sunn Pedersen, J. Plasma Phys. 83, 595830106 (2017).
  • [17] M.R. Stoneking, T. Sunn Pedersen, P. Helander et al., J. Plasma Phys. 86, 155860601 (2020).
  • [18] T. Sunn Pedersen, J.R. Danielson, C. Hungenschmidt et al., New J. Phys. 14, 035010 (2012).
  • [19] H. Saitoh, J. Stanja, E.V. Stenson et al., New J. Phys. 17, 103038 (2015).
  • [20] V. Tsytovich and C.B. Wharton, Comments Plasma Phys. Control. Fusion 4, 91 (1978).
  • [21] J. von der Linden, G. Fiksel, J. Peebles et al., Phys. Plasmas 28, 092508 (2021).
  • [22] H. Higaki, C. Kaga, K. Fukushima et al., New J. Phys. 19, 023016 (2017).
  • [23] H. Higaki, K. Ito and H. Okamoto, Jpn. J. Appl. Phys. 58, 080912 (2019).