Plasma and Fusion Research
Volume 18, 1401088 (2023)
Regular Articles
- Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
Abstract
In this study, experimental investigation was conducted on intermittent chaos caused by time-delayed feedback in the laboratory plasma. In a limit cycle with time-delayed feedback, a periodic system moved down the intermittency route to chaos, with the appearance of an increasing number of bursts that interfered with the laminar flow, as the feedback signal strength increased if an appropriate delay time was not selected. Analyses of the obtained time series revealed that the system with feedback has chaotic characteristics and that the shape of the recurrence plot differs from that of the turbulent state in which feedback is not applied. By observing the spatiotemporal structure, it was revealed that the system, which is in a periodic state both in time and space, transitions to a state of spatiotemporal chaos through the application of feedback. In this study, it was observed that the system undergoes intermittency, which leads to a chaotic state when time-delayed feedback is provided to nonlinear limit-cycle oscillations.
Keywords
chaos, limit-cycle, intermittency, controlling chaos, delayed feedback, ionization wave
Full Text
References
- [1] P. Manneville and Y. Pomeau, Phys. Lett. A 75, 1 (1979).
- [2] W. Boswell, Plasma Phys. Control. Fusion 27, 405 (1985).
- [3] M. Ohno, M. Tanaka, A. Komori and Y. Kawai, J. Phys. Soc. Jpn. 58, 28 (1989).
- [4] D.L. Feng, J. Zheng, W. Huang, C.X. Yu and W.X. Ding, Phys. Rev. E 54, 2839 (1996).
- [5] T. Fukuyama, H. Shirahama and Y. Kawai, Phys. Plasmas 9, 4525 (2002).
- [6] T. Tsubone, T. Saito and N. Inaba, Prog. Theor. Exp. Phys. 2016, 053A01 (2016).
- [7] Y. Nariyuki, M. Sasaki, N. Kasuya, T. Hada and M. Yagi, Prog. Theor. Exp. Phys. 2017, 033J01 (2017).
- [8] K. Okubo and K. Umeno, Prog. Theor. Exp. Phys. 2018, 103A01 (2018).
- [9] T. Fukuyama, R. Yamaguchi and H. Kanzaki, Plasma Fusion Res. 15, 2401049 (2020).
- [10] M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978).
- [11] S. Ostlund, D. Rand, J. Sethna and E. Siggia, Physica D 8, 303 (1983).
- [12] H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).
- [13] L.M. Pecora and T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
- [14] E. Ott, C. Grebogi and J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
- [15] K. Pyragas, Phys. Lett. A 170, 421 (1992).
- [16] S. Bielawski, D. Derozier and P. Glorieux, Phys. Rev. E 49, R971 (1994).
- [17] W.X. Ding, H.Q. She, W. Huang and C.X. Yu, Phys. Rev. Lett. 72, 96 (1994).
- [18] Th. Pierre, G. Bonhomme and A. Atipo, Phys. Rev. Lett. 76, 2290 (1996).
- [19] A.G. Balanov, N.B. Janson and E. Schöll, Phys. Rev. E 71, 016222 (2005).
- [20] T. Shimada and T. Moriya, Prog. Theor. Exp. Phys. 2014, 023A05 (2014).
- [21] N. Chaubey, S. Mukherjee, A.N. Sekar Iyengar and A. Sen, Phys. Plasmas 22, 022312 (2015).
- [22] T. Fukuyama and M. Okugawa, Phys. Plasmas 24, 032302 (2017).
- [23] T. Fukuyama, K. Hagimine and R. Miyazaki, J. Phys. Soc. Jpn. 86, 095003 (2017).
- [24] N. Inaba, H. Ito, K. Shimizu and H. Hikawa, Prog. Theor. Exp. Phys. 2018, 063A01 (2018).
- [25] T. Fukuyama and M. Omoto, Prog. Theor. Exp. Phys. 2021, 073J01 (2021).
- [26] T. Fukuyama and N. Nishida, Plasma Fusion Res. 17, 1201002 (2022).
- [27] M. Novák, Czech. J. Phys. 10, 954 (1960).
- [28] N.L. Oleson and A.W. Cooper, Adv. Electron. Electron Phys. 24, 155 (1968).
- [29] K. Ohe and S. Takeda, Contrib. Plasma Phys. 14, 55 (1974).
- [30] I. Grabec and S. Mikac, Plasma Phys. 16, 1155 (1974).
- [31] N. Bekki, J. Phys. Soc. Jpn. 50, 659 (1981).
- [32] M. Rottmann and K.H. Spatschek, J. Plasma Phys. 60, 215 (1998).
- [33] L. Sirghi, K. Ohe and G. Popa, J. Phys. D: Appl. Phys. 31, 551 (1998).
- [34] See the following page. https://youtu.be/sTCUC9Vv8R8
- [35] N.H. Packard, J.P. Crutchfield, J.D. Farmer and R.S. Shaw, Phys. Rev. Lett. 45, 712 (1980).