Plasma and Fusion Research

Volume 18, 1401037 (2023)

Regular Articles


An Inductively Coupled Plasma System for Investigating Spectropolarimetric Responses of Solar Plasmas to Anisotropic Fields
Tomoko KAWATE1,2), Haruhisa NAKANO1,2), Yuwei HUANG3), Daiki YAMASAKI3,4), Kiyoshi ICHIMOTO3), Motoshi GOTO1,2), Satoru UENO3), Goichi KIMURA3), Joseph J. SIMONS2) and Yasuko KAWAMOTO1)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Kyoto University, Kyoto 606-8502, Japan
4)
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
(Received 6 February 2023 / Accepted 5 April 2023 / Published 23 May 2023)

Abstract

High precision measurements and accurate modeling of atomic polarization under three-dimensional radiation transfer are crucial to understand the structures of magnetized solar plasmas. To develop and validate spectropolarimetric measurements and analyses, we set up an inductively coupled plasma (ICP) generator designed especially for ∼ 1-eV plasmas interacting with radiation and weak magnetic fields. The device was put in front of the focal plane of the Horizontal Spectrograph of the Domeless Solar Telescope at Hida Observatory of Kyoto University. In helium discharges, the typical electron temperature, electron density, and helium column density of the ICP are comparable values to those of solar prominences, and the direct comparison of spectra shows almost the same opacity at He I 1083 nm. Magnetic and radiation fields were introduced to the ICP, and the system successfully reproduced reasonable spectropolarimetric signals as compared with those from the solar prominences.


Keywords

astrophysical plasma, spectroscopy, polarization, diagnostics

DOI: 10.1585/pfr.18.1401037


References

  • [1] J.-F. Donati and J.D. Landstreet, Annu. Rev. Astron. Astrophys. 47, 333 (2009).
  • [2] T. Chatani et al., Sci. Rep. 12, 15567 (2022).
  • [3] D.H. Mackay et al., Space Sci. Rev. 151, 333 (2010).
  • [4] N. Labrosse et al., Space Sci. Rev. 151, 243 (2010).
  • [5] A.A. van Ballegooijen and P.C.H. Martens, Astrophys. J. 343, 971 (1989).
  • [6] D.M. Rust and A. Kumar, Sol. Phys. 155, 69 (1994).
  • [7] D. Orozco Suárez et al., Astron. Astrophys. 566, A46 (2014).
  • [8] Y. Hanaoka and T. Sakurai, Astrophys. J. 851, 130 (2017).
  • [9] J. Trujillo Bueno et al., Nature 415, 403 (2002).
  • [10] Y. Nakai and A. Hattori, Memoirs Faculty of Sciences University of Kyoto 36, 385 (1985). URL http://hdl.handle.net/2433/257590
  • [11] K. Ichimoto et al., Technical Reports from Astronomical Observatory, Graduate School of Science, Kyoto University 6, 3 (2022). URL http://hdl.handle.net/2433/278127
  • [12] A. Kramida and NIST ASD Team (2022), NIST Atomic Spectra Database (ver. 5.10), [Online]. URL https://physics.nist.gov/asd [2017, April 9]. National Institute of Standards and Technology, Gaithersburg, MD.
  • [13] S. Kajita et al., Phys. Plasmas 24, 073301 (2017).
  • [14] N. Baguer et al., J. Appl. Phys. 93, 47 (2003).
  • [15] K.L. Bell et al., J. Phys. B 1, 18 (1968).
  • [16] S. Nowak et al., Appl. Phys. B: Lasers Opt. 63, 203 (1996).
  • [17] J. Trujillo Bueno and A. Asensio Ramos, Astrophys. J. 655, 642 (2007).
  • [18] T. Fujimoto, J. Quant. Spectrosc. Radiat. Transfer 14, 377 (1974).
  • [19] M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76, 331 (2003).
  • [20] A. Asensio Ramos et al., Astrophys. J. 683, 542 (2008).
  • [21] Y. Iida et al., Phys. Plasmas 17, 123301 (2010).
  • [22] T. Shikama et al., J. Phys. D 49, 025206 (2015).
  • [23] J. Hopwood, Plasma Sources Sci. Technol. 1, 109 (1992).
  • [24] S. Parenti, Living Rev. Sol. 11, 1 (2014).
  • [25] M. Hagino et al., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 9151, 91515V (2014).
  • [26] R. Tokuda et al., Technical Reports from Astronomical Observatory, Graduate School of Science, Kyoto University 4, 1 (2019). URL http://hdl.handle.net/2433/241382
  • [27] G. Ruan et al., Astrophys. J. 865, 123 (2018).
  • [28] D. Yamasaki et al., accepted by Publ. Astron. Soc. Jpn.
  • [29] M. Goto, Plasma Polarization Spectroscopy (Springer Berlin, Heidelberg 2008) chap. 2.
  • [30] R.J. Rutten, Radiative Transfer in Stellar Atmospheres (Lecture Notes Utrecht University 2003) URL https://robrutten.nl/Radiative Transfer.html
  • [31] C.B. Markwardt, Astronomical Society of the Pacific Conference Series 411, 251 (2009).
  • [32] J.J. Moré, Lecture Notes in Mathematics, vol. 630 (Springer, Berlin, Heidelberg 1978) p. 105.
  • [33] J.J. Moré and S.J. Wright, Optimization Software Guide (Society for Industrial and Applied Mathematics 1993)
  • [34] W.E. Baylis, Progress in Atomic Spectroscopy, part A (1978) p. 1227.
  • [35] T. Fujimoto and S.A. Kazantsev, Plasma Phys. Control. Fusion 39, 1267 (1997).
  • [36] R. Manso Sainz et al., Astrophys. J. 788, 118 (2014).
  • [37] J. Trujillo Bueno et al., Astrophys. J. Lett. 746, L9 (2012).