Plasma and Fusion Research
Volume 18, 1201086 (2023)
Rapid Communications
- 1)
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- 2)
- College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
- 3)
- Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- 4)
- Research Centre for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
- 5)
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
- 6)
- Department of Electrical and Electronic Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- 7)
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- 8)
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
Abstract
Recently, a new method that applies vector tomography to laser-induced fluorescence has been introduced, enabling the measurement of quasi-periodic two-dimensional velocity field in plasma [H. Arakawa et al., Plasma Fusion Res. 18, 1401032 (2023)]. In this study, we experimentally demonstrated this method in a linear magnetized plasma and presented the initial measurement results. The observed two-dimensional velocity field allowed the evaluation of Reynolds force and its energy transfer.
Keywords
magnetized plasma, laser-induced fluorescence, vector tomography, velocity field, Reynolds force
Full Text
References
- [1] A. Fujisawa, A review of zonal flow experiments, Nucl. Fusion 49, 013001 (2009).
- [2] R.A. Stern and J.A. Johnson, Plasma ion diagnostics using resonant fluorescence, Phys. Rev. Lett. 34(25), 1548 (1975).
- [3] F. Anderegg, R.A. Stern, F. Skiff, B.A. Hammel, M.Q. Tran, P.J. Paris and P. Kohler, Ion heating due to rotation and collision in magnetized plasma, Phys. Rev. Lett. 57(3), 329 (1986).
- [4] J. Howard, Vector tomography applications in plasma diagnostics, Plasma Phys. Control. Fusion 38(4), 489 (1996).
- [5] A.L. Balandin, Y. Murata and Y. Ono, Radial velocity profile reconstruction by doppler spectroscopy measurements, Eur. Phys. J. D: Atomic, Molecular, Optical Plasma Phys. 27(2), 125 (2003).
- [6] H. Arakawa, M. Sasaki, S. Inagaki and A. Fujisawa, Reynolds force evaluation of quasi-coherent structure by tomographic laser-induced fluorescence spectroscopy, Plasma Fusion Res. 18, 1401032 (2023).
- [7] S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T. Mitsuzono, Y. Nagashima, H. Arakawa, T. Yamada, Y. Miwa, N. Kasuya et al., A concept of cross-ferroic plasma turbulence, Sci. Rep. 6, 22189 (2016).
- [8] Y. Nagashima, A. Fujisawa, K. Yamasaki, S. Inagaki, C. Moon, F. Kin, Y. Kawachi, H. Arakawa, T. Yamada, T. Kobayashi et al., A proposal to evaluate electron temperature and electron density fluctuations using dual wavelength emission intensity tomography in a linear plasma, J. Phys. Soc. Jpn. 92(3), 033501 (2023).
- [9] H. Arakawa, S. Inagaki, Y. Kosuga, M. Sasaki, F. Kin, K. Hasamada, K. Yamasaki, T. Kobayashi, T. Yamada, Y. Nagashima et al., Ion temperature measurement by laserinduced fluorescence spectroscopy in panta, IEEJ Trans. Electr. Electron. Eng. 14(10), 1450 (2019).
- [10] J. Hseih, Computed Tomography - Principles, Design, Artifacts and Recent Advances, 01 2009.