Plasma and Fusion Research

Volume 17, 2405062 (2022)

Regular Articles


Effect of Deuterium Fluence on Deuterium Retention in Tungsten with Fibrous Nanostructured Layer in a Compact Plasma Device APSEDAS
Takahisa SAKAI, Dogyun HWANGBO, Naoki ORIKASA, Mikoto KUSUMOTO, Katsutomo TAKATSU, Haru YOSHIDA, Aoi FUJIMORI, Ryusei NITTA and Mizuki SAKAMOTO
Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
(Received 10 January 2022 / Accepted 29 March 2022 / Published 6 June 2022)

Abstract

The formation of helium (He) induced “fuzz layer” significantly changes the deuterium (D) retention in tungsten (W). In this study, the D retention in W with an identical fuzz layer is investigated using thermal desorption spectroscopy, with various D ion fluences. It is found that the D retention substantially decreases by ∼80% at relatively low fluence of ∼1024 D/m2, and ∼40% at the higher fluence of 6 × 1025 D/m2. A new broad desorption peak at ∼650 K appearing at the higher D ion fluences of >1025 D/m2 originates from the interior of the fuzz layer, not the W bulk space. This suggests that the fuzz layer can force D ions to stay near the surface of W regardless of the D ion fluence, working as a diffusion barrier of hydrogen isotope fuels.


Keywords

helium, fuzz, deuterium retention, tungsten, diffusion barrier

DOI: 10.1585/pfr.17.2405062


References

  • [1] T. Loarer et al., J. Nucl. Mater. 337-339, 624 (2005).
  • [2] R.A. Pitts et al., J. Nucl. Mater. 438, 48 (2013).
  • [3] Y. Ueda et al., J. Nucl. Mater. 386-388, 725 (2009).
  • [4] Y. Nobuta et al., Fusion Sci. Technol. 77, 76 (2021).
  • [5] M. Miyamoto et al., Nucl. Fusion 49, 065035 (2009).
  • [6] V.Kh. Alimov et al., J. Nucl. Mater. 415, 628 (2011).
  • [7] M. Reinhart et al., J. Nucl. Mater. 463, 1021 (2015).
  • [8] M.J. Baldwin et al., Nucl. Fusion 51, 103021 (2011).
  • [9] O.V. Ogorodnikova et al., J. Nucl. Mater. 515, 150 (2019).
  • [10] L. Liu et al., J. Nucl. Mater. 539, 152327 (2020).
  • [11] K. Doi et al., Fusion Eng. Des. 136, 100 (2018).
  • [12] D.H. Liu et al., Nucl. Fusion 60, 056018 (2020).
  • [13] M. Yajima et al., J. Nucl. Mater. 438, S1142 (2013).
  • [14] A. Rusinov et al., Plasma Fusion Res. 7, 1405105 (2012).
  • [15] S. Kajita et al., Nucl. Fusion 49, 095005 (2009).
  • [16] Z. Harutyunyan et al., J. Nucl. Mater. 548, 152848 (2021).
  • [17] M. Oya et al., J. Nucl. Mater. 438, S1052 (2013).
  • [18] Z. Tian et al., J. Nucl.Mater. 399.1, 101 (2010).