Plasma and Fusion Research

Volume 17, 2405045 (2022)

Regular Articles


Thermal Neutron Measurement Capability of a Single Crystal CVD Diamond Detector near the Reactor Core Region of UTR-KINKI
Makoto I. KOBAYASHI1,2), Sachiko YOSHIHASHI3), Hirokuni YAMANISHI4), Siriyaporn SANGAROON1,5), Kunihiro OGAWA1,2), Mitsutaka ISOBE1,2), Akira URITANI3) and Masaki OSAKABE1,2)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki, Gifu 509-5292, Japan
3)
Nagoya University, Nagoya, Aichi 464-8603, Japan
4)
Kindai University, Atomic Energy Research Institute, Osaka 577-8502, Japan
5)
Mahasarakham University, Thailand
(Received 16 December 2021 / Accepted 21 February 2022 / Published 6 June 2022)

Abstract

Thermal neutron flux evaluation using a single crystal diamond detector (SDD) was carried out in the core region of the UTR-KINKI reactor where a mixed radiation field by thermal and fast neutrons and gamma-ray exists. The pulse shape discrimination method to extract pulses with a rectangular shape as well as a wide pulse-width was established to exclude pulses induced by gamma-rays. The SDD, using a 6LiF thermal neutron converter, is able to detect pulse events caused not only by fast neutrons but also by thermal neutrons through energy depositions into the diamond by energetic alpha and triton particles induced by thermal neutrons. Additionally, the SDD without the thermal neutron converter was used for the measurement of the energy deposition events only by fast neutrons. A comparison of the pulse counts of the SDD with or without the thermal neutron convertor deduced the energy deposition spectra by thermal neutrons. The thermal neutron flux in the core region of the UTR-KINKI reactor was evaluated to be 7.6 × 106 n cm−2 s−1 W−1 up to a reactor power of 1 W.


Keywords

neutron, diamond detector, UTR-KINKI, TBR

DOI: 10.1585/pfr.17.2405045


References

  • [1] M. Nocente et al., Fast ion energy distribution from third harmonic radio frequency heating measured with a single crystal diamond detector at the Joint European Torus, Rev. Sci. Instrum. 86, 103501 (2015).
  • [2] D. Rigamonti et al., Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium tritium fusion plasma diagnostics, Meas. Sci. Technol. 29, 4 (2018).
  • [3] C. Cazzaniga et al., Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas, Rev. Sci. Instrum. 85, 043506 (2014).
  • [4] C. Cazzaniga et al., A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas, Rev. Sci. Instrum. 85, 11E101 (2014).
  • [5] L. Giacomelli et al., Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors, Rev. Sci. Instrum. 87, 11D822 (2016).
  • [6] M. Rebai et al., Pixelated Single-crystal Diamond Detector for fast neutron measurements, J. Instrum. 10, C03016 (2015).
  • [7] A. Muraro et al., First neutron spectroscopy measurements with a pixelated diamond detector at JET, Rev. Sci. Instrum. 87, 11D833 (2016).
  • [8] T. Du, X. Peng, Z. Chen, Z. Hu, L. Ge, L. Hu, G. Zhong, N. Pu, J. Chen and T. Fan, Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST, Plasma Sci. Technol. 18, 950 (2016).
  • [9] X. Xie, X. Yuan, X. Zhang, Z. Chen, X. Peng, T. Du, T. Li, Z. Hu, Z. Cui, J. Chen, X. Li, G. Zhang, T. Fan, G. Yuan, J. Yang and Q. Yang, Application of a single crystal chemical vapor deposition diamond detector for deuteron plasma neutron measurement, Nucl. Instrum. Methods Phys. Res. A 761, 28 (2014).
  • [10] M. Kobayashi, K. Ogawa, M. Isobe, T. Nishitani, S. Kamio, Y. Fujiwara, T. Tsubouchi, S. Yoshihashi, A. Uritani, M. Sakama, M. Osakabe and the LHD Experiment Group, Thermal neutron flux evaluation by a single crystal CVD diamond detector in LHD deuterium experiment, J. Instrum. 14, C09039 (2019).
  • [11] P. Kavrigin, P. Finocchiaro, E. Griesmayer, E. Jericha, A. Pappalardo and C. Weiss, Pulse-shape analysis for gamma background rejection in thermalneutron radiation using CVD diamond detectors, Nucl. Instrum. Methods Phys. Res. A 795, 88 (2015).
  • [12] M.I. Kobayashi, M. Angelone, S. Yoshihashi, K. Ogawa, M. Isobe, T. Nishitani, S. Sangaroon, S. Kamio, Y. Fujiwara, T. Tsubouchi, A. Uritani, M. Sakama, M. Osakabe and the LHD Experiment Group, Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD, Fusion Eng. Des. 161, 112063 (2020).
  • [13] UTR-KINKI research reactor of the KINDAI University, Japan https://www.kindai.ac.jp/files/rd/research-center/aeri/guide/external-use/outside4.pdf (in Japanese)
  • [14] S. Endo, T. Taniguchi, T. Kajimoto, K. Tanaka, M. Takada, S. Kamada, T. Horiguchi and K. Fujikawa, Measurement of the gamma-ray energy spectrum of the educational Kinki University Reactor (UTR-KINKI), Appl. Rad. Isotopes 124, 90 (2017).
  • [15] S. Endo, K. Tanaka, K. Fujikawa, T. Horiguchi, T. Itoh, G. Bengua, T. Nomura and M. Hoshi, Distortion of neutron field during mice irradiation at Kinki University Reactor UTR-KINKI, Appl. Rad. Isotopes 65, 1037 (2007).
  • [16] W. Shockley, Currents to Conductors Induced by a Moving Point Charge, J. Appl. Phys. 9, 635 (1938).
  • [17] Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instrum. Methods Phys. Res. A 463, 250 (2001).
  • [18] T.Williams, C. N'Diaye, D. Breton, K. Cassou, K. Dupraz, P. Favier, D. Jehanno, V. Kubytskyi, X. Liu, J. Maalmi, A. Martens, Y. Peinaud, A. Stocchi, F. Zomer, E. Griesmayer, P. Kavrigin, M.W. Ahmed, M. Sikora and H.R.Weller, Operation of a fast diamond γ-ray detector at the HIγS facility, Nucl. Instrum. Methods Phys. Res. A 830, 391 (2016).
  • [19] C. Weiss, H. Frais-Kolbl E. Griesmayer and P. Kavrigin, Ionization signals from diamond detectors in fast-neutron fields, Eur. Phys. J. A 52, 269 (2016).
  • [20] https://cividec.at
  • [21] K. Ogawa, M. Isobe, T. Nishitani and T. Kobuchi, The large helical device vertical neutron camera operating in the MHz counting rate range, Rev. Sci. Instrum. 89, 113509 (2018).
  • [22] M.I. Kobayashi, S. Yoshihashi, K. Ogawa, M. Isobe, S. Sangaroon, S. Kamio, Y. Fujiwara and M. Osakabe, A comprehensive evaluation of the thermal neutron detection efficiency by single crystal CVD diamond detector with LiF thermal neutron converter, Fusion Eng. Des. 179, 113117 (2022).
  • [23] A. Kitamura, J. Matsumoto, Y. Furuyama, A. Taniike, N. Kubota, T. Ohsawa, K. Hashimoto, T. Horiguchi and T. Tsuruta, Measurements and Analysis of Neutron Flux Distribution in UTR-KINKI, J. Nucl. Sci. Technol. 40, 349 (2003).
  • [24] K. Kobayashi, T. Yoshimoto, Z. Li, I. Kimura, S. Kanazawa and T. Ohsawa, Determination of thermal and intermediate neutron spectrum at UTR-KINKI using Cf-ratio measurement by activation method, Report of Cooperative Research Using UTR-KINKI, Fac. of Eng., Osaka Univ. 35, 15 (1999).