Plasma and Fusion Research

Volume 17, 2402012 (2022)

Regular Articles


Feasibility Study of Deuterium-Deuterium Fusion Profile Diagnostics Using Fusion Born 3 MeV Proton for CFQS
Kunihiro OGAWA1,2), Mitsutaka ISOBE1,2), Ryosuke SEKI1,2), Hideo NUGA1), Hiroyuki YAMAGUCHI1,2), Siriyaporn SANGAROON3), Akihiro SHIMIZU1,2), Shoichi OKAMURA1), Hiromi TAKAHASHI1,2), Tetsurato OISHI1,2), Shigeyoshi KINOSHITA1), Takanori MURASE1), Sho NAKAGAWA1), Hiroyuki TANOUE1), Masaki OSAKABE1,2), Haifeng LIU4) and Yuhong XU4)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand
4)
Southwest Jiaotong University, Sha Xi Mei Shi Yi Tiao Jie, Jinniu District, Chengdu, Sichuan, China
(Received 8 December 2021 / Accepted 14 February 2022 / Published 30 March 2022)

Abstract

A feasibility study for measuring a deuterium-deuterium (D-D) fusion reaction radial profile by promptly lost D-D fusion born 3 MeV protons, whose energy Larmor radius is the same as the minor radius of CFQS, was performed. The Lorentz orbit code was utilized to estimate the predicted signals of collimated proton detectors using the D-D fusion radial profile calculated by the analytical Fokker-Planck code for steady-state plasma FIT3D-DD code. The inversion of the D-D fusion profile using the estimated signals was performed using a linear matrix solution library. The coarse agreement between input and inverted profiles shows the possibility of D-D fusion profile diagnostics by a 3 MeV proton in CFQS.


Keywords

CFQS, fusion product diagnostics, fusion emission profile, deuterium plasma, energetic ion

DOI: 10.1585/pfr.17.2402012


References

  • [1] A. Fasoli et al., Nucl. Fusion 47, S264 (2007).
  • [2] M. Isobe et al., Plasma Fusion Res. 14, 3402074 (2019).
  • [3] H.F. Liu et al., Plasma Fusion Res. 13, 3405067 (2018).
  • [4] A. Shimizu et al., Plasma Fusion Res. 13, 3403123 (2018).
  • [5] H.F. Liu et al., Nucl. Fusion 61, 016014 (2021).
  • [6] J. Varela et al., Nucl. Fusion 61, 026023 (2021).
  • [7] X.Q. Wang et al., Nucl. Fusion 61, 036021 (2021).
  • [8] S. Kinoshita et al., Plasma Fusion Res. 14, 3405097 (2019).
  • [9] A. Shimizu et al., Plasma Fusion Res. 14, 3403151 (2019).
  • [10] T. Murase et al., Fusion Eng. Des. 161, 111869 (2020).
  • [11] S. Nakagawa et al., Plasma Fusion Res. 15, 2405066 (2020).
  • [12] G. Xiong et al., Fusion Eng. Des. 160, 112021 (2020).
  • [13] A. Shimizu et al., accepted for publication in Nucl. Fusion.
  • [14] K. Ogawa et al., Plasma Fusion Res. 14, 3402067 (2019).
  • [15] W.U. Boeglin et al., Rev. Sci. Instrum. 81, 10D301 (2010).
  • [16] A. Netepenko et al., Rev. Sci. Instrum. 87, 11D805 (2016).
  • [17] R.V. Perez et al., Rev. Sci. Instrum. 85, 11D701 (2014).
  • [18] S.P. Hirshman and O. Betancourt, J. Comput. Phys. 96, 99 (1991).
  • [19] S. Murakami et al., Trans. Fusion Technol. 27, 256 (1995).
  • [20] R. Seki et al., Plasma Fusion Res. 14, 3402126 (2019).
  • [21] M. Isobe et al., J. Plasma Fusion Res. SERIES 8, 330 (2009).
  • [22] R. Seki et al., “Prediction of Neutron Emission Rate in Deuterium Neutral Beam heated CFQS plasmas using FIT3D-DD code” The 30th International Toki Conference on Plasma and Fusion Research (2021) and submitted to Plasma and Fusion Research.