Plasma and Fusion Research
Volume 17, 1406003 (2022)
Regular Articles
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
Abstract
A detailed experimental study has been conducted to demonstrate the efficient confinement of ions in the popular four-rod configuration of a linear Paul trap without exciting the transverse radio-frequency (rf) quadrupole field. The three-dimensional (3D) ion confinement is achieved with an identical rf voltage applied to the end electrodes. The optimum operating region is visualized in the stability tune diagram, which indicates that a large number of ions can be stored by adjusting a few fundamental parameters. The lifetime of an ion cloud in the present linear trap is over a second (corresponding to a million rf cycles), long enough for various practical applications. It is also shown through 3D numerical simulations that one can easily extract ions from the trap at a low loss rate below 10%.
Keywords
non-neutral plasma, linear Paul trap, radio-frequency confinement of ion, stability diagram
Full Text
References
- [1] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
- [2] S. Maher, F.P.M. Jjunju and S. Talor, Rev. Mod. Phys. 87, 113 (2015).
- [3] J. Dilling, K. Blaum, M. Brodeur and S. Eliseev, Annu. Rev. Nucl. Part. Sci. 68, 45 (2018).
- [4] H.B. Pedersen, D. Strasser, S. Ring et al., Phys. Rev. Lett. 87, 055001 (2001).
- [5] J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
- [6] R. Blatt and D. Wineland, Nature 453, 1008 (2008).
- [7] P. Schindler, D. Nigg, T. Monz et al., New J. Phys. 15, 123012 (2013).
- [8] C.D. Bruzewicz, J. Chiaverini, R. McConnell et al., Appl. Phys. Rev. 6, 021314 (2019).
- [9] C. Monroe, W.C. Campbell, L.-M. Duan et al., Rev. Mod. Phys. 93, 025001 (2021).
- [10] M. Amoretti, C. Amsler and G. Bonomi, Nature 419, 456 (2002).
- [11] C.M. Surko and R.G. Greaves, Phys. Plasmas 11, 2333 (2004).
- [12] G.B. Andersen, M.D. Ashkezari, M. Baquero-Ruiz et al., Nature 468, 673 (2010).
- [13] J.R. Danielson, D.H.E. Dubin, R.G. Greaves and C.M. Surko, Rev. Mod. Phys. 87, 247 (2015).
- [14] J. Fajan and C.M. Surko, Phys. Plasmas 27, 030601 (2020).
- [15] R. Takai, H. Enokizono, K. Ito et al., Jpn. J. Appl. Phys. 45, 5332 (2006).
- [16] H. Okamoto, M. Endo, K. Fukushima et al., Nucl. Instrum. Meth. A 733, 119 (2014).
- [17] K. Moriya, M. Ota, K. Fukushima et al., Phys. Rev. Accel. Beams 19, 114201 (2016).
- [18] K. Ito, H. Okamoto, Y. Tokashiki and K. Fukushima, Phys. Rev. Accel. Beams 20, 064201 (2017).
- [19] J.D. Prestage, G.J. Dick and L. Maleki, J. Appl. Phys. 66, 1013 (1989).
- [20] D.J. Berkland, J.D. Miller, J.C. Bergquist, W.M. Itano and D.J. Wineland, J. Appl. Phys. 83, 5025 (1998).
- [21] S.A. Diddams, Th. Udem, J.C. Bergquist et al., Science 293, 825 (2001).
- [22] S.M. Brewer, J.-S. Chen, A.M. Hankin et al., Phys. Rev. Lett. 123, 033201 (2019).
- [23] E.A. Burt, J.D. Prestage, R.L. Tjoelker et al., Nature 595, 43 (2021).
- [24] P.K. Ghosh, Ion Traps (Clarendon, Oxford, 1995).
- [25] H. Okamoto, K. Kojima and K. Ito, Prog. Theor. Exp. Phys. 2019, 093G01 (2019).
- [26] R.F. Bonner, J.E. Fulford, J.E. Fulford and R.E. March, Int. J. Mass Spectrom. Ion Phys. 24, 255 (1977).
- [27] Handbook of Accelerator Physics And Engineering, edited by A.W. Chao and M. Tigner (World Scientific, Singapore, 1999), 3rd printing.
- [28] E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).
- [29] K. Ito, K. Nakayama, S. Ohtsubo, H. Higaki and H. Okamoto, Jpn. J. Appl. Phys. 47, 8017 (2008).
- [30] K. Ito, M. Matsuba and H. Okamoto, Prog. Theor. Exp. Phys. 2018, 023G01 (2018).