Plasma and Fusion Research
Volume 17, 1404088 (2022)
Regular Articles
- Department of Electrical and Electronic Systems Engineering, Ibaraki University, Hitachi 316-8511, Japan
Abstract
A method is presented for controlling the trajectory of a vertically injected charged spherical laser fusion target. The position and time of the injected target in flight are measured in a position measurement unit using the Arago spot. After the target passes between the first pair of deflection plates, where there exists a constant electric field, the mass-to-charge ratio of the target in flight is obtained from the shift in its trajectory. The amplitude of the electric field applied between the second and third pairs of deflection plates is calculated using this ratio. After passing through the second and third pairs of deflection plates, the target deflects its trajectory to pass through the reactor center. The design parameters of the trajectory control system for a tabletop plasma device and a laser fusion reactor are presented.
Keywords
trajectory control, laser fusion energy target, position measurement unit, Arago spot, mass-to-charge ratio
Full Text
References
- [1] D. Goodin et al., Fusion Eng. Des. 60, 27 (2002).
- [2] R. Tsuji, Fusion Eng. Des. 81, 2877 (2006).
- [3] T. Kassai and R. Tsuji, J. Phys. Conf. Ser. 112, 032047 (2008).
- [4] R. Petzoldt et al., Fusion Sci. Technol. 52, 459 (2007).
- [5] R. Petzoldt et al., Fusion Sci. Technol. 56, 417 (2009).
- [6] M. Horowitz et al., Phys. Rev. 88, 1182 (1952).
- [7] S. Bodner et al., Fusion Eng. Des. 60, 93 (2002).
- [8] K. Saruta and R. Tsuji, Jpn. J. Appl. Phys. 47, 1742 (2008).
- [9] Y. Mori et al., Fusion Sci. Technol. 75, 36 (2019).
- [10] Y. Mori et al., Nucl. Fusion 59, 096022 (2019).
- [11] O. Komeda et al., Plasma Fusion Res. 8, 1205020 (2013).
- [12] O. Komeda et al., Sci. Rep. 3, 2561 (2013).
- [13] R. Tsuji, Plasma Fusion Res. 14, 3405164 (2019).
- [14] R. Tsuji et al., J. Phys. Conf. Ser. 688, 012124 (2016).
- [15] T. Norimatsu et al., Fusion Sci. Technol. 43, 339 (2003).
- [16] J. Brown and R. Churchill, Complex Variables and Applications 8 th ed. (McGraw-Hill, New York 2009) p. 401.
- [17] H. Kober, Dictionary of Conformal Representation (Dover Publications, New York 1957) p. 116.
- [18] K. Binns and P. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems 2 nd ed. (Pergamon Press, Oxford 1973) p. 156.
- [19] J. Jeans, The Mathematical Theory of Electricity and Magnetism 5 th ed. (Cambridge University Press, London 1925) p. 274.
- [20] H. Lamb, Hydrodynamics 6 th ed. (Cambridge University Press, London 1932) p. 74.