Plasma and Fusion Research

Volume 17, 1403083 (2022)

Regular Articles


Gyrokinetic Turbulent Transport Simulations on Steady Burning Condition in D-T-He Plasmas
Motoki NAKATA1,2,3) and Mitsuru HONDA4)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, Toki 509-5292, Japan
3)
PRESTO, Japan Science and Technology Agency, 418 Honcho, Kawaguchishi, Saitama 332-0012, Japan
4)
Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8530, Japan
(Received 26 April 2022 / Accepted 17 May 2022 / Published 22 July 2022)

Abstract

Ion temperature gradient (ITG) and trapped electron modes (TEM) driven turbulent transport in an ITER-like plasma is investigated by means of multi-species gyrokinetic Vlasov simulations with D, T, He, and real-mass kinetic electrons including their inter-species collisions. Beyond the conventional zero-dimensional power balance analysis presuming the global energy and particle confinement times, gyrokinetic-simulation-based evaluation of a steady burning condition with He-ash exhaust and D-T fuel inward pinch is demonstrated. It is clarified that a significant imbalance appears in the turbulent particle flux for the fuel ions of D and T, depending on the D-T density ratio and the He-ash accumulation. Then several profile regimes to satisfy Reiter's steady burning condition are, for the first time, identified by the gyrokinetic simulation. Also, the impacts of zonal flows and nonthermal He-ash on the optimal profile regimes are examined.


Keywords

burning plasma, turbulent transport, steady burning condition, multi-species gyrokinetic simulation

DOI: 10.1585/pfr.17.1403083


References

  • [1] C. Estrada-Mila et al., Phys. Plasmas 12, 022305 (2005).
  • [2] C. Estrada-Mila et al., Phys. Plasmas 13, 112303 (2006).
  • [3] M. Nakata et al., Phys. Rev. Lett. 118, 165002 (2017).
  • [4] E.A. Belli et al., Phys. Rev. Lett. 125, 015001 (2020).
  • [5] C. Bourdelle et al., Nucl. Fusion 58, 076028 (2018).
  • [6] C. Angioni et al., Nucl. Fusion 49, 055013 (2009).
  • [7] C. Angioni, Phys. Plasmas 22, 102501 (2015).
  • [8] M. Nakata et al., Plasma Fusion Res. 17, 1203078 (2022).
  • [9] S. Maeyama et al., Nat. Commun. 13, 3166 (2022).
  • [10] K. Ida et al., Phys. Rev. Lett. 124, 025002 (2020).
  • [11] K. Ida et al., Nucl. Fusion 61, 016012 (2021).
  • [12] H. Urano et al., Nucl. Fusion 55, 033010 (2015).
  • [13] J. Mailloux et al., Nucl. Fusion, in press.
  • [14] D. Reiter et al., Nucl. Fusion 30, 2141 (1990).
  • [15] E. Rebhan et al., Nucl. Fusion 36, 264 (1996).
  • [16] M. Nakata et al., Plasma Fusion Res. 9, 1403029 (2014).
  • [17] M. Nakata et al., Comput. Phys. Commun. 197, 61 (2015).
  • [18] M. Nakata et al., Nucl. Fusion 56, 080016 (2016).
  • [19] T.-H. Watanabe et al., Nucl. Fusion 46, 24 (2006).
  • [20] H. Sugama et al., Phys. Plasmas 16, 112502 (2009).
  • [21] M. Nakata et al., Phys. Plasmas 19, 022303 (2012).