Plasma and Fusion Research
Volume 17, 1301106 (2022)
Letters
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- 1)
- College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
- 2)
- Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- 3)
- Research Centre for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
- 4)
- Université de Lorraine, CNRS, IJL, Nancy F-54000, France
- 5)
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
- 6)
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 502-5292, Japan
- 7)
- National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193, Japan
- 8)
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- 9)
- Frontier Research Institute, Chubu University, Kasugai 487-8501, Japan
Abstract
A solitary vortex organization process in drift-wave type fluctuations interacting with the zonal flow was identified experimentally in a linear magnetized plasma. An azimuthal probe array was used to evaluate temporal changes in the amplitude and phase in the density fluctuations. Excitation/damping of the solitary vortex is synchronized with zonal perturbation, and the waveform of drift-wave type fluctuation and its harmonics also changes synchronously. The solitary vortex is formed primarily through the phase modulation of the fundamental drift-wave type fluctuation and its harmonics.
Keywords
magnetized plasma, zonal flow, drift wave, solitary wave, solitary vortex
Full Text
References
- [1] F.J. Beron-Vera, M.G. Brown, M.J. Olascoaga, I.I. Rypina, H. Koçak and I.A. Udovydchenkov, Zonal jets as transport barriers in planetary atmospheres, J. Atmos. Sci. 65 (10), 3316 (2008).
- [2] N.A. Maximenko, B. Bang and H. Sasaki, Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett. 32 (12), L12607 (2005).
- [3] D.W. Hughes, R. Rosner and N.O. Weiss, The Solar Tachocline (Cambridge University Press, 2007).
- [4] A.R. Vasavada and A.P. Showman, Jovian atmospheric dynamics: An update after Galileo and Cassini, Rep. Prog. Phys. 68, 1935 (2005).
- [5] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Zonal flows in plasma–a review, Plasma Phys. Control. Fusion 47, R35 (2005).
- [6] A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi et al., Identification of zonal flows in a toroidal plasma, Phys. Rev. Lett. 93 (16), 165002 (2004).
- [7] M. Nakata, M. Nunami, H. Sugama and T. Watanabe, Isotope effects on trapped-electron-mode driven turbulence and zonal flows in helical and tokamak plasmas, Phys. Rev. Lett. 118 (16), 165002 (2017).
- [8] G.K. Vallis, Atmospheric and oceanic fluid dynamics (Cambridge University Press, 2017).
- [9] J. Tollefson, M.H. Wong, I. de Pater, A.A. Simon, G.S. Orton, J. Rogers, S.K. Atreya, R.G. Cosentino, W. Januszewski, R. Morales-Juberías et al., Changes in jupiter's zonal wind profile preceding and during the juno mission, Icarus 296, 163 (2017).
- [10] H. Arakawa, S. Inagaki, M. Sasaki, Y. Kosuga, T. Kobayashi, N. Kasuya, Y. Nagashima, T. Yamada, M. Lesur, A. Fujisawa et al., Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma, Sci. Rep. 6, 33371 (2016).
- [11] H. Arakawa, M. Sasaki, S. Inagaki, Y. Kosuga, T. Kobayashi, N. Kasuya, T. Yamada, Y. Nagashima, F. Kin, A. Fujisawa, K. Itoh and S.-I. Itoh, Roles of solitary eddy and splash in drift wave-zonal flow system in a linear magnetized plasma, Phys. Plasmas 26 (5), 052305 (2019).
- [12] H. Arakawa, T. Kobayashi, S. Inagaki, N. Kasuya, S. Oldenbürger, Y. Nagashima, T. Yamada, M. Yagi, A. Fujisawa, K. Itoh et al., Dynamic interaction between a solitary drift wave structure and zonal flows in a linear cylindrical device, Plasma Phys. Control. Fusion 53 (11), 115009 (2011).
- [13] T. Yamada, S.-I. Itoh, T. Maruta, N. Kasuya, Y. Nagashima, S. Shinohara, K. Terasaka, M. Yagi, S. Inagaki, Y. Kawai et al., Anatomy of plasma turbulence, Nature Phys. 4 (9), 721 (2008).
- [14] H. Arakawa, S. Inagaki, Y. Nagashima, T. Yamada, K. Kamataki, T. Kobayashi, S. Sugita, M. Yagi, N. Kasuya, A. Fujisawa, S.-I. Itoh and K. Itoh, Bifurcation of the plasma turbulence on LMD-U, Plasma Phys. Control. Fusion 52 (10), 105009 (2010).
- [15] S. Inagaki, Y. Miwa, T. Kobayashi, T. Yamada, Y. Nagashima, T. Mitsuzono, H. Fujino, M. Sasaki, N. Kasuya, M. Lesur, Y. Kosuga, A. Fujisawa, S.-I. Itoh and K. Itoh, Identification of quasi-periodic nonlinear waveforms in turbulent plasmas, Plasma Fusion Res. 9, 1201016 (2014).
- [16] M. Sasaki, N. Kasuya, T. Kobayashi, H. Arakawa, K. Itoh, K. Fukunaga, T. Yamada, M. Yagi and S.-I. Itoh, Formation mechanism of steep wave front in magnetized plasmas, Phys. Plasmas 22, 032315 (2015).