Plasma and Fusion Research

Volume 17, 1301106 (2022)

Letters


Formation Process of a Solitary Vortex in a Zonal Flow — Drift-Wave Dynamics
Hiroyuki ARAKAWA, Makoto SASAKI1), Shigeru INAGAKI2,3), Maxime LESUR4), Yusuke KOSUGA3,5), Tatsuya KOBAYASHI6), Fumiyoshi KIN7), Takuma YAMADA3,8), Yoshihiko NAGASHIMA3,5), Akihide FUJISAWA3,5) and Kimitaka ITOH3,6,9)
Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
1)
College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
2)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
3)
Research Centre for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
4)
Université de Lorraine, CNRS, IJL, Nancy F-54000, France
5)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
6)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 502-5292, Japan
7)
National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193, Japan
8)
Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
9)
Frontier Research Institute, Chubu University, Kasugai 487-8501, Japan
(Received 11 September 2022 / Accepted 11 October 2022 / Published 24 November 2022)

Abstract

A solitary vortex organization process in drift-wave type fluctuations interacting with the zonal flow was identified experimentally in a linear magnetized plasma. An azimuthal probe array was used to evaluate temporal changes in the amplitude and phase in the density fluctuations. Excitation/damping of the solitary vortex is synchronized with zonal perturbation, and the waveform of drift-wave type fluctuation and its harmonics also changes synchronously. The solitary vortex is formed primarily through the phase modulation of the fundamental drift-wave type fluctuation and its harmonics.


Keywords

magnetized plasma, zonal flow, drift wave, solitary wave, solitary vortex

DOI: 10.1585/pfr.17.1301106


References

  • [1] F.J. Beron-Vera, M.G. Brown, M.J. Olascoaga, I.I. Rypina, H. Koçak and I.A. Udovydchenkov, Zonal jets as transport barriers in planetary atmospheres, J. Atmos. Sci. 65 (10), 3316 (2008).
  • [2] N.A. Maximenko, B. Bang and H. Sasaki, Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett. 32 (12), L12607 (2005).
  • [3] D.W. Hughes, R. Rosner and N.O. Weiss, The Solar Tachocline (Cambridge University Press, 2007).
  • [4] A.R. Vasavada and A.P. Showman, Jovian atmospheric dynamics: An update after Galileo and Cassini, Rep. Prog. Phys. 68, 1935 (2005).
  • [5] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Zonal flows in plasma–a review, Plasma Phys. Control. Fusion 47, R35 (2005).
  • [6] A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi et al., Identification of zonal flows in a toroidal plasma, Phys. Rev. Lett. 93 (16), 165002 (2004).
  • [7] M. Nakata, M. Nunami, H. Sugama and T. Watanabe, Isotope effects on trapped-electron-mode driven turbulence and zonal flows in helical and tokamak plasmas, Phys. Rev. Lett. 118 (16), 165002 (2017).
  • [8] G.K. Vallis, Atmospheric and oceanic fluid dynamics (Cambridge University Press, 2017).
  • [9] J. Tollefson, M.H. Wong, I. de Pater, A.A. Simon, G.S. Orton, J. Rogers, S.K. Atreya, R.G. Cosentino, W. Januszewski, R. Morales-Juberías et al., Changes in jupiter's zonal wind profile preceding and during the juno mission, Icarus 296, 163 (2017).
  • [10] H. Arakawa, S. Inagaki, M. Sasaki, Y. Kosuga, T. Kobayashi, N. Kasuya, Y. Nagashima, T. Yamada, M. Lesur, A. Fujisawa et al., Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma, Sci. Rep. 6, 33371 (2016).
  • [11] H. Arakawa, M. Sasaki, S. Inagaki, Y. Kosuga, T. Kobayashi, N. Kasuya, T. Yamada, Y. Nagashima, F. Kin, A. Fujisawa, K. Itoh and S.-I. Itoh, Roles of solitary eddy and splash in drift wave-zonal flow system in a linear magnetized plasma, Phys. Plasmas 26 (5), 052305 (2019).
  • [12] H. Arakawa, T. Kobayashi, S. Inagaki, N. Kasuya, S. Oldenbürger, Y. Nagashima, T. Yamada, M. Yagi, A. Fujisawa, K. Itoh et al., Dynamic interaction between a solitary drift wave structure and zonal flows in a linear cylindrical device, Plasma Phys. Control. Fusion 53 (11), 115009 (2011).
  • [13] T. Yamada, S.-I. Itoh, T. Maruta, N. Kasuya, Y. Nagashima, S. Shinohara, K. Terasaka, M. Yagi, S. Inagaki, Y. Kawai et al., Anatomy of plasma turbulence, Nature Phys. 4 (9), 721 (2008).
  • [14] H. Arakawa, S. Inagaki, Y. Nagashima, T. Yamada, K. Kamataki, T. Kobayashi, S. Sugita, M. Yagi, N. Kasuya, A. Fujisawa, S.-I. Itoh and K. Itoh, Bifurcation of the plasma turbulence on LMD-U, Plasma Phys. Control. Fusion 52 (10), 105009 (2010).
  • [15] S. Inagaki, Y. Miwa, T. Kobayashi, T. Yamada, Y. Nagashima, T. Mitsuzono, H. Fujino, M. Sasaki, N. Kasuya, M. Lesur, Y. Kosuga, A. Fujisawa, S.-I. Itoh and K. Itoh, Identification of quasi-periodic nonlinear waveforms in turbulent plasmas, Plasma Fusion Res. 9, 1201016 (2014).
  • [16] M. Sasaki, N. Kasuya, T. Kobayashi, H. Arakawa, K. Itoh, K. Fukunaga, T. Yamada, M. Yagi and S.-I. Itoh, Formation mechanism of steep wave front in magnetized plasmas, Phys. Plasmas 22, 032315 (2015).