Plasma and Fusion Research

Volume 16, 2405040 (2021)

Regular Articles


Conceptual Design of HFIR Irradiation Experiment for Material Compatibility Study on Liquid Sn Divertor
Masatoshi KONDO, Bruce A. PINT1), Jiheon JUN1), Nick RUSSELL1), Joel McDUFFEE1), Masafumi AKIYOSHI2), Teruya TANAKA3), Naoko OONO4), Junichi MIYAZAWA3), Josina W GERINGER1), Yutai KATOH1) and Yuji HATANO5)
Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
1)
Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
2)
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
3)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
4)
Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0808 Japan
5)
University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
(Received 2 November 2020 / Accepted 2 November 2020 / Published 7 May 2021)

Abstract

Liquid Sn is one of the promising coolants for liquid surface divertor concept of fusion reactors. However, the compatibility between liquid Sn and structural materials is an important issue that has to be addressed, because liquid Sn is extremely corrosive to steels at high temperatures. The corrosion may be mitigated when a protective Al2O3 layer is formed on the surface of alumina forming steels. However, the effect of neutron irradiation on the integrity of protective layer is not made clear so far. Japan and US joint research project “FRONTIER” started in 2019 to investigate the material compatibility under neutron irradiation. The purpose of the present study is to develop the conceptual design of the irradiation test capsule which enables material compatibility tests for the alumina forming steels - liquid metal systems under neutron irradiation in the High Flux Isotope Reactor at Oak Ridge National Laboratory, TN, USA. The three dimensional drawing of capsule structure was then developed. The validity of the material selections for the capsule design was investigated by means of corrosion tests of SiC, Si3N4, Ti, and Mo in liquid Sn at 773 K for 262 hr.


Keywords

liquid metal, irradiation, divertor, compatibility, irradiation test capsule

DOI: 10.1585/pfr.16.2405040


References

  • [1] R.E. Nygren and F.L. Tabares, Nucl. Mater. Energy 9, 6 (2016).
  • [2] J. Miyazawa et al., Fusion Eng. Des. 125, 227 (2017).
  • [3] M. Kondo and Y. Nakajima, Fusion Eng. Des. 88, 2556 (2013).
  • [4] M. Kondo, M. Ishii and T. Muroga, Fusion Eng. Des. 98, 2003 (2015).
  • [5] A. Heinzel, A. Weisenburger and G. Müller, Materials and Corrosion 9999, 1 - 7, maco. 201609211 (2017).
  • [6] M. Kondo and M. Takahashi, J. Nucl. Mater. 356, 203 (2006).
  • [7] B.A. Pint, J. Nucl. Mater. 417, 1195 (2011).
  • [8] M. Kondo et al., Fusion Eng. Des. 146, 2450 (2019).
  • [9] F.W. Clinard, Jr. and G.F. Hurley, J. Nucl. Mater. 108&109, 655 (1982).
  • [10] Y. Hatano et al., J. Plasma Fusion Res. 96, 3, 145 (2020).
  • [11] A.A. Campbell, W.D. Porter, Y. Katoh and L.L. Snead, Nucl. Instrum. Methods Phys. Res. B, 370, 49 (2016).
  • [12] R.A. FORREST and M.R. GILBERT, “FISPACT-2005: User Manual”, UKAEA FUS 514, United Kingdom Atomic Energy Authority.
  • [13] L.R. Greenwood et al., DOE/ER-0313/23, Oak Ridge National Laboratory.
  • [14] M. Takahashi and M. Kondo, Prog. Nucl. Energy 53, 1061 (2011).
  • [15] J.R. Lance and G.A. Kenmeny, Am. Soc. Metals. Trans. Quart. 56, 204 (1963).
  • [16] N. Kawano, Y. Tamai and M. Kondo, Plasma Fusion Res. 15, 1205068 (2020).
  • [17] Thermodynamic database MALT group. Thermodynamic database MALT for Windows. Kagaku Gijutsu-Sha. 2005. (CD-ROM), available from http://www.kagaku.com/malt/index.html (accessed 2020-12-28).
  • [18] K.L. Luthra, J. Am. Ceram. Soc. 74, 5, 1095 (1991).


Publisher's Note

This article has an erratum: Masatoshi KONDO et al., Plasma Fusion Res. 16, 2905088 (2021).