Plasma and Fusion Research
Volume 16, 2405026 (2021)
Regular Articles
- Tokyo Institute of Technology, School of Engineering, Department of Mechanical Engineering, Graduate Major in Nuclear Engineering, Tokyo 152-8550, Japan
- 1)
- Tokyo Institute of Technology, Institute of Innovative Research, Laboratory for Advanced Nuclear Energy, Tokyo 152-8550, Japan
Abstract
Liquid lithium (Li) is one of the tritium breeders of fusion reactors and the target material of advanced fusion neutron source. However, its chemical compatibility with structural materials is one of the important issues. Austenitic steels corrode due to the preferential depletion of Ni from their surface in liquid Li. However, the mass transfer behaviors of Ni in liquid Li at low temperature have been rarely studied. The purpose of the present study is to make clear the mass transfer behaviors of Ni in liquid Li by quartz crystal microbalance (QCM). The Ni electrode of the QCM unit got wet with liquid Li of approximately 5.89 × 10−2 cc at 473 K and 523 K for 600 seconds. The resonance frequency of the QCM unit changed due to the mass loss of the Ni electrode by the Ni dissolution into static liquid Li. The mass losses of Ni in liquid Li at 473 K and 523 K were obtained by Saurbrey's equation as 6.60 × 10−3 g/m2 and 1.27 × 10−2 g/m2, respectively. The diffusion coefficient of Ni in static Li at 473 K was in the range between 1.13 × 10−10 and 5.10 × 10−10 m2/s by the model evaluation based on the Fick's second law. The diffusion coefficient at 523 K was in the range between 1.90 × 10−10 and 6.87 × 10−10 m2/s.
Keywords
quartz crystal microbalance, liquid metal, mass transfer, corrosion, diffusion coefficient
Full Text
References
- [1] T. Muroga, M. Gasparotto and S.J. Zinkle, Fusion Eng. Des. 61-62, 13 (2002).
- [2] M. Kondo, T. Tanaka, S. Fukada and T. Valentyn, Comprehensive Nuclear Materials 2nd edition 6, 176 (2020).
- [3] S. Sato, M. Nakamura, S. Kwon, M. Ohta, C. Park, M. Oyaidzu, K. Ochiai, A. Kasugai, K. Sakamoto and S. Ishida, Fusion Eng. Des. 155, 111714 (2020).
- [4] A. Kasugai, K. Kasuya, H. Kobayashi, H. Kondo, S. Kwon, M. Nakamura, K. Ochiai, M. Ohta, M. Oyaidzu, C. Park, S. Sato and M. Teduka, PASJ2018, Nagaoka, Japan, THOL08, 110 (2018).
- [5] M. Kondo, V. Tsisar, T. Muroga, T. Nagasaka and O. Yeliseyeva, Plasma Fusion Res. 9, 294 (2010).
- [6] X. Meng, G. Zuo, W. Xu, Z. Sun, M. Huang, X. Yuan, C. Xu, W. Hu, D. Andruczyk, J. Hu and H. Deng, Fusion Eng. Des. 128, 75 (2018).
- [7] J. Qian, J. Chen, J. Chen, Z. Xu, W. Wang and C. Pan, J. Nucl. Mater. 179-181, 603 (1991).
- [8] T. Suzuki, ISIJ 75-11, 35 (1989).
- [9] Q. Xu, M. Kondo, T. Nagasaka, T. Muroga, M. Nagura and A. Suzuki, Fusion Eng. Des. 83, 1477 (2008).
- [10] I.E. Lyublinski, V.A. Evtikhin, V.Yu. Pankratov and V.P. Krasin, J. Nucl. Mater. 224, 288 (1995).
- [11] F. Tortorelli, J. Nucl. Mater. 191-194, 965 (1992).
- [12] G. Saurbrey, Zeitschrift für Physik 155, 206 (1959).
- [13] K. Kanazawa and J. Gordon, Anal. Chim. Acta 175, 99 (1985).
- [14] K.J. Choia, Y.H. Kima, S.M. Changa, A. Egawab and H. Muramatsu, Anal. Chim. Acta 386, 229 (1999).
- [15] K.S.P. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala and R.M.G. Rajapakse, J. Phys. Chem. Solids 117, 131 (2018).
- [16] N.M. Beskorovainyi, A.G. Itoltukhovskii, I.E. Lyublinskii and V.K. Vasil'ev, UDC 621. 039. 53 (1981).
- [17] H.W. Leavenworth and R.E. Cleary, Acta Metall. 9, 519 (1961).
- [18] Y. Gao, M. Takahashi and M. Nomura, Energy Procedia 71, 313 (2015).
- [19] Y. Gao, M. Takahashi, M. Nomura and T. Nozawa, Fusion Eng. Des. 109-111, 1604 (2016).
- [20] J.S. Murday and R.M. Cotts, J. Chem. Phys. 48, 4938 (1968).
- [21] P. Favuzza, A. Aiello, A. Antonelli, M. Cuzzani, G. Fasano, M. Granieri, S. Mannori, G. Micciche, F.S. Nitti, M. Tarantino and A. Tincani, Fusion Eng. Des. 136, 1417 (2018).