Plasma and Fusion Research

Volume 16, 2405005 (2021)

Regular Articles


Acceleration Techniques for Linear-System Solver in Shielding Current Analysis of Cracked HTS Film
Atsushi KAMITANI, Teruou TAKAYAMA, Ayumu SAITOH and Hiroaki NAKAMURA1,2)
Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
(Received 15 November 2020 / Accepted 16 December 2020 / Published 19 February 2021)

Abstract

Two types of acceleration techniques, H-matrix arithmetics and an H-matrix-based variable preconditioning (VP), as well as their combination are applied to a linear-system solver in the shielding current analysis of a cracked high-temperature superconducting film. Although the combination seems to be the most effective of three types of the acceleration techniques, the results of computations show that, from the standpoint of the acceleration performance, neither the H-matrix-based VP nor the combination is superior to H-matrix arithmetics. The reason for this unexpected result is explained from the standpoint of operation counts.


Keywords

computer simulation, finite element method, high-temperature superconducting film, Krylov space method, Newton method, power law

DOI: 10.1585/pfr.16.2405005


References

  • [1] A. Kamitani, T. Takayama and S. Ikuno, IEEE Trans. Magn. 47, 1138 (2011).
  • [2] A. Kamitani, T. Takayama, A. Saitoh and S. Ikuno, J. Adv. Simulat. Sci. Eng. 4, 117 (2018).
  • [3] A. Kamitani, T. Takayama and A. Saitoh, Int. J. Appl. Electromagn. Mech. 59, 157 (2019).
  • [4] K. Hattori, A. Saito, Y. Takano et al., Physica C 471, 1033 (2011).
  • [5] L. Makong, A. Kameni, L. Queval et al., IEEE Trans. Magn. 54, 7205404 (2018).
  • [6] F. Sirois, F. Grilli and A. Morandi, IEEE Trans. Appl. Supercond. 29, 8000110 (2019).
  • [7] G.H. Golub and C.F. Van Loan, Matrix Computations, 4th ed. (Johns Hopkins University Press, Maryland, 2013) p.246.
  • [8] M. Bebendorf, Hierarchical Matrices (Springer-Verlag, Berlin, 2008) p.49.
  • [9] S. Kurz, O. Rain and S. Rjasanow, IEEE Trans. Magn. 38, 412 (2002).
  • [10] K. Abe and S. Zhang, Int. J. Numer. Anal. Model. 2, 147 (2005).