Plasma and Fusion Research

Volume 16, 2404076 (2021)

Regular Articles


Hot Electron and Ion Spectra in Axial and Transverse Laser Irradiation in the GXII-LFEX Direct Fast Ignition Experiment
Tetsuo OZAKI, Yuki ABE1), Yasunobu ARIKAWA1), Shinichirou OKIHARA2), Eisuke MIURA3), Atsushi SUNAHARA4), Katsuhiro ISHII2), Ryohei HANAYAMA2), Osamu KOMEDA5), Yasuhiko SENTOKU1), Akifumi IWAMOTO, Hitoshi SAKAGAMI, Tomoyuki JOHZAKI6), Junji KAWANAKA1), Shigeki TOKITA1), Noriaki MIYANAGA1), Takahisa JITSUNO1), Yoshiki NAKATA1), Koji TSUBAKIMOTO1), Yoshitaka MORI2) and Yoneyoshi KITAGAWA2)
National Institute for Fusion Science, Toki 509-5292, Japan
1)
Institute of Laser Engineering, Osaka University, Suita 565-0871, Japan
2)
The Graduate School for the Creation of New Photonics Industries (GPI), Hamamatsu 431-1202, Japan
3)
National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan
4)
Purdue University, West Lafayette, IN, 47907, United States
5)
Advanced Material Engineering Divison, TOYOTA Motor Corporation, Toyota 471-8571, Japan
6)
Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
(Received 12 November 2020 / Accepted 25 March 2021 / Published 7 June 2021)

Abstract

An electron spectrometer was used to measure the electron and ion spectra in two different irradiations of implosion laser to the deuterated spherical shell targets at the direct fast ignition experiments on the Gekko-LFEX facility. In the transverse irradiation against the LFEX laser axis, the low effective hot electron temperature (Teff) and huge neutron yield (Ny) could be obtained although high Teff and low Ny could be observed in the axial irradiation. In the transverse irradiation, the efficient core heating could be obtained because the laser-plasma interaction position is close to the core and the diffusive/ion drag heating may be effective.


Keywords

electron spectrometer, LFEX, GXII, neutron yield, coupling efficiency, deuteron, Teff

DOI: 10.1585/pfr.16.2404076


References

  • [1] M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
  • [2] Y. Kitagawa et al., Phys. Rev. E 71, 016403 (2005).
  • [3] R. Kodama et al., Nature 418, 933 (2002).
  • [4] S. Sakata et al., Nature Com. 9, 3937 (2018).
  • [5] Y. Kitagawa et al., Plasma Fusion Res. 6, 1306006 (2011).
  • [6] S. Fujioka et al., Sci. Rep. 3, 1170 (2013).
  • [7] T. Ozaki et al., Physica Scripta 2014, T161, 014025 (2014).
  • [8] H. Shiraga et al., Plasma Phys. Control. Fussion 53, 124029 (2011).
  • [9] T. Ozaki et al., Rev. Sci. Instrum. 83, 10D920-1 (2012).
  • [10] Y. Abe et al., Rev. Sci. Instrum. 89, 110I114 (2018).
  • [11] E. Miura et al., HED Phys. 36, 100890 (2020).
  • [12] Y. Kitagawa et al., 3P20, IFSA2019.
  • [13] T. Ozaki et al., J. Phys. 717, 012043 (2016).
  • [14] Y. Abe et al., HED Phys. 36, 100803 (2020).
  • [15] A. Sunahara et al., J. Phys. 717(1), 012055 (2016).
  • [16] http://www.srim.org/
  • [17] N. Higashi et al., HED Phys. 36 100829 (2020).