Plasma and Fusion Research

Volume 16, 2402050 (2021)

Regular Articles


Energy Flow in the Super Alfvénic/Sonic Collisional Merging Process of Field-Reversed Configurations
Daichi KOBAYASHI, Tomohiko ASAI, Tsutomu TAKAHASHI, Arisa TATSUMI, Naoto SAHARA, Tatsuhiro WATANABE, Daisuke HARASHIMA, Hiroshi GOTA1) and Thomas ROCHE1)
College of Science and Technology, Nihon University, Tokyo 101-8308, Japan
1)
TAE Technologies, Inc., Foothill Ranch, CA 92610, USA
(Received 16 November 2020 / Accepted 11 February 2021 / Published 9 April 2021)

Abstract

Energy flow in the collisional merging process of a field-reversed configuration (FRC) was experimentally evaluated. Collisional merging formation of an FRC was carried out in the FAT-CM (FRC amplification via translation-collisional merging) device. In this experiment, the field-reversed theta-pinch formed FRC-like plasmoids are accelerated due to a magnetic pressure gradient. Then, two plasmoids collide at a relative speed of ∼300 km/s, which is faster than typical Alfvén and ion sound speeds (∼50 km/s) on the separatrix. The kinetic and internal energy of plasmoids before and after collision are estimated by simultaneous multi-point measurements combining magnetic probes and interferometers. The energy flow in the collisional merging process is compared to an experimental case with single plasmoid translation. This comparison indicates that the kinetic energy of two accelerated plasmoids regenerates back into the internal thermal energy of the FRC after merging. Moreover, density and neutron measurements suggest excitation of shockwaves. These results indicate that shock heating may become a channel for energy regeneration.


Keywords

field-reversed configuration, high beta plasma, FRC merging, shockwave, energy regeneration

DOI: 10.1585/pfr.16.2402050


References

  • [1] M. Tuszewski, Nucl. Fusion 28, 2033 (1988).
  • [2] L.C. Steinhauer, Phys. Plasmas 18, 070501 (2011).
  • [3] T. Asai, Ts. Takahashi, J. Sekiguchi, D. Kobayashi, S. Okada et al., Nucl. Fusion 59, 056024 (2019).
  • [4] H. Guo, M. Binderbauer, D. Barnes, S. Putvinski, N. Rostoker et al., Phys. Plasmas 18, 056110 (2011).
  • [5] H. Gota, M.W. Binderbauer, T. Tajima, S. Putvinski, M. Tuszewski et al., Nucl. Fusion 59, 112009 (2019).
  • [6] H. Himura, S. Okada, S. Sugimoto and S. Goto, Phys. Plasmas 2, 191 (1995).
  • [7] H. Himura, S. Ueoka, M. Hase, R. Yoshida, S. Okada and S. Goto, Phys. Plasmas 5, 4262 (1998).
  • [8] M.W. Binderbauer, H.Y. Guo, M. Tuszewski, S. Putvinski, L. Sevier et al., Phys. Rev. Lett. 105, 045003 (2010).
  • [9] D.J. Rej, W.T. Armstrong, R.E. Chrien, P.L. Klingner and R.K. Linford et al., Phys. Fluids 29, 852 (1986).
  • [10] L.C. Steinhauer, H. Guo, A. Hoffman, A. Ishida and D. Ryutov, Phys. Plasmas 13, 056119 (2006).
  • [11] Y. Mok, D. Barnes and S. Dettrick, Bull. Am. Phys. Soc. 55, GP9.97 (2010).
  • [12] M. Onofri, P. Yushmanov, S. Dettrick, D. Barnes, K. Hubbard and T. Tajima, Phys. Plasmas 24, 092518 (2017).
  • [13] P.H. Gaskell and A.K.C. Lau, Int. J. Numer. Methods Fluids 8, 617 (1988).
  • [14] D. Kobayashi, T. Asai, Ts. Takahashi, J. Sekiguchi, H. Gota, S. Dettrick, Y. Mok, M. Binderbauer and T. Tajima, Plasma Fusion Res. 15, 2402020 (2020).
  • [15] J. Sekiguchi, T. Asai and Ts. Takahashi, Plasma Fusion Res. 14, 3402116 (2019).
  • [16] R. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).