Plasma and Fusion Research

Volume 16, 2402033 (2021)

Regular Articles


Visible Light Tomography Considering Reflection Light in a Small Tokamak Device PHiX
Koyo MUNECHIKA, Hiroaki TSUTSUI and Shunji TSUJI-IIO
Tokyo Institute of Technology, Tokyo 152-8550, Japan
(Received 30 November 2020 / Accepted 1 February 2021 / Published 12 March 2021)

Abstract

In a small tokamak, the visible light emission is observed and used to investigate plasmas' behavior with a fast visible camera. However, the reflected light causes a systemic error in measuring visible light emitted from the plasma. In this paper, we managed to overcome the reflection effect with the ray-tracing technique which is utilized in a synthetic diagnostic platform of the small tokamak device PHiX at Tokyo Institute of Technology using Raysect and CHERAB python libraries. We successfully evaluated the amount of reflected light and obtained tomographic reconstruction images from simulated and experimental data with the Tikhonov-Phillips regularization and the L-curve method to choose an optimal regularization parameter. We also proposed to project the contour of a reconstruction image onto a camera image to validate tomography results.


Keywords

high-speed camera, tomographic reconstruction, visible light, reflection light, Tikhonov-Phillips, L-curve, ray tracing, small tokamak, synthetic diagnostics platform

DOI: 10.1585/pfr.16.2402033


References

  • [1] G. Federici et al., Fusion Eng. Des. 136, 729 (2018).
  • [2] Y. Someya et al., Fusion Eng. Des. 136, 1306 (2018).
  • [3] I.P.B. Editors et al., Nucl. Fusion 39, 2137 (1999).
  • [4] H. Zhang et al., IEEE Trans. Plasma Sci. 46, 1312 (2018).
  • [5] J. Xiang et al., Fusion Eng. Des. 131, 166 (2018).
  • [6] M. Odstrčil et al., Rev. Sci. Instrum. 85, 013509 (2014).
  • [7] T. Kobayashi et al., in Proc. 42nd eps conf. plasma phys. (2015) P4.188.
  • [8] A. Meakins et al., raysect/source: v0.5.2 Release, 2018.
  • [9] D.C. Giroud et al., CHERAB Spectroscopy Modelling Framework, 2018.
  • [10] S. Silburn et al., Calcam, 2020.
  • [11] L. Shi et al., Rev. Sci. Instrum. 87, 11D303 (2016).
  • [12] M. Carr et al., Rev. Sci. Instrum. 90, 043504 (2019).
  • [13] B. Walter et al., Eurographics, 195 (2007).
  • [14] S.C. Jardin et al., J. Comput. Phys. 66, 481 (1986).
  • [15] N. Iwama et al., J. Plasma Fusion Res. 82, 399 (2006).
  • [16] P.C. Hansen, Comput. Inverse Probl. Electrocardiology, ed. P. Johnston, Adv. Comput. Bioeng. 4, 119 (2000).