Plasma and Fusion Research
Volume 16, 2402006 (2021)
Regular Articles
- 1)
- National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Toki, Gifu 509-5292, Japan
- 2)
- The Graduate University for Advanced Studies, SOKENDAI, 322-6 Toki, Gifu 509-5292, Japan
Abstract
Extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) wavelength spectra including line emissions released from neon (Ne) ions ranging from low to high charge states observed simultaneously in a single discharge are summarized for contribution to compile a fundamental spectral dataset for the Ne-seeded divertor heat load reduction experiments in Large Helical Device (LHD). NeIX and NeX lines were observed in the EUV wavelength range of 10∼50 Å and NeIII-NeVIII lines were observed in the VUV wavelength range of 400∼1000 Å. The temporal evolutions of the line intensities exhibited different behaviors between the edge emissions of NeIII-NeVIII with the ionization potential, Ei, of 63∼239 eV and the core emission of NeX with Ei of 1362 eV. NeIX with Ei of 1196 eV exhibited a marginal behavior between the edge emission and the core emission.
Keywords
plasma spectroscopy, extreme ultraviolet, vacuum ultraviolet, magnetically confined fusion, impurity seeding, divertor detachment
Full Text
References
- [1] ITER Physics Basis, “Chapter 4: Power and particle control”, Nucl. Fusion 39, 2391 (1999).
- [2] M. Shimada et al., Nucl. Fusion 47, S1 (2007).
- [3] S. Masuzaki et al., J. Nucl. Mater. 438, S133 (2013).
- [4] K. Mukai et al., Nucl. Fusion 55, 083016 (2015).
- [5] H. Tanaka et al., Nucl. Mater. Energy 12, 241 (2017).
- [6] C. Suzuki et al., Nucl. Mater. Energy 14, 195 (2019).
- [7] K. Mukai et al., Plasma Fusion Res. 15, 1402051 (2020).
- [8] H.M. Zhang et al., Plasma Fusion Res. 11, 2402019 (2016).
- [9] H.M. Zhang et al., Phys. Plasmas 24, 022510 (2017).
- [10] M. Kobayashi et al., Nucl. Fusion 59, 096009 (2019).
- [11] T. Nakano et al., J. Nucl. Mater. 438, S291 (2013).
- [12] C. Suzuki et al., J. Nucl.Mater. 463, 561 (2015).
- [13] G.S. Xu et al., Nucl. Fusion 60, 086001 (2020).
- [14] Y. Takeiri et al., Nucl. Fusion 57, 102023 (2017).
- [15] M.B. Chowdhuri et al., Appl. Opt. 47, 135 (2008).
- [16] M.B. Chowdhuri et al., Rev. Sci. Instrum. 78, 023501 (2007).
- [17] T. Oishi et al., Plasma Fusion Res. 10, 3402031 (2015).
- [18] C.F. Dong et al., Rev. Sci. Instrum. 82, 113102 (2011).
- [19] K.Y. Watanabe et al., Plasma Phys. Control. Fusion 49, 605 (2007).
- [20] A. Kramida et al., NIST Atomic Spectra Database (ver.5.7.1), (2019). [Online]. Available: https://physics.nist.gov/asd [2020, October 27]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
- [21] R.L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).
- [22] R. Katai et al., Plasma Fusion Res. 2, 014 (2007).
- [23] X.L. Huang et al., Rev. Sci. Instrum. 85, 043511 (2014).
- [24] C.F. Dong et al., Rev. Sci. Instrum. 81, 033107 (2010).
- [25] E.H. Wang et al., Rev. Sci. Instrum. 83, 043503 (2012).
- [26] H.M. Zhang et al., Jpn. J. Appl. Phys. 54, 086101 (2015).
- [27] T. Oishi et al., Appl. Opt. 53, 6900 (2014).
- [28] G. Kawamura et al., Plasma Phys. Control. Fusion 60, 084005 (2018).