Plasma and Fusion Research

Volume 16, 1406046 (2021)

Regular Articles


Spatial Uniformity Evaluation of Atmospheric-Pressure Microwave Line Plasma for Wide-Area Surface Treatment
Haruka SUZUKI1,2), Hirotsugu KOMA1), Tomohiro OGASAWARA1), Yosuke KOIKE1) and Hirotaka Toyoda1,2,3)
1)
Department of Electronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
2)
Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
3)
National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292, Japan
(Received 17 October 2020 / Accepted 13 February 2021 / Published 9 April 2021)

Abstract

Spatial uniformity of an atmospheric-pressure microwave line plasma is evaluated from surface hydrophilicity treatment of polyethylene terephthalate film as well as observation of optical emission from the plasma. Prior to the experiments, the structure of the waveguide-based plasma source is optimized using a three-dimensional electromagnetic simulation to suppress standing-wave generation for the uniformity of plasma production. The spatial distribution in the longitudinal direction of the Argon (Ar) plasma is investigated by operating the microscope parallel to the slot and by irradiating film with the plasma to improve surface wettability of the film. Uniform profile of water contact angle is obtained in 40 cm with very high-speed processing.


Keywords

atmospheric pressure plasma, microwave plasma, hydrophilic treatment of film

DOI: 10.1585/pfr.16.1406046


References

  • [1] M. Iwasaki et al., Appl. Phys. Lett. 92, 081503 (2008).
  • [2] M.J. Shenton and G.C. Stevens, J. Phys. D: Appl. Phys. 34, 2761 (2001).
  • [3] M.J. Shenton et al., J. Phys. D: Appl. Phys. 34, 2754 (2001).
  • [4] M. Noeske et al., Int. J. Adhes. Adhes. 24, 171 (2004).
  • [5] R. Foest et al., Plasma Phys. Control. Fusion 47, B525 (2005).
  • [6] Y. Sawada et al., J. Phys. D: Appl. Phys. 29, 2539 (1996).
  • [7] Y. Sawada et al., Jpn. J. Appl. Phys. 38, 6506 (1999).
  • [8] Y. Mori et al., Rev. Sci. Instrum. 71, 3173 (2000).
  • [9] N. Gherardi, S. Martin and F. Massines, J. Phys. D: Appl. Phys. 33, L104 (2000).
  • [10] Y. Ito, O. Sakai and K. Tachibana, Thin Solid Films 518, 3513 (2010).
  • [11] T. Belmonte et al., J. Therm. Spray Technol. 20, 744 (2011).
  • [12] M. Agemi et al., Surf. Coat. Technol. 206, 2025 (2011).
  • [13] U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).
  • [14] F. Massines et al., Plasma Phys. Control. Fusion 47, B577 (2005).
  • [15] A. Schutze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998).
  • [16] N. Balcon et al., Plasma Sources Sci. Technol. 16, 217 (2007).
  • [17] M. Laroussi and T. Akan, Plasma Process. Polym. 4, 777 (2007).
  • [18] M. Moisan et al., Plasma Sources Sci. Technol. 3, 584 (1994).
  • [19] A. Kono et al., Jpn. J. Appl. Phys. 40, L238 (2001).
  • [20] Y. Kabouzi et al., J. Appl. Phys. 91, 1008 (2002).
  • [21] H. Itoh et al., Jpn. J. Appl. Phys. 52, 11NE01 (2013).
  • [22] K. Sasai et al., Jpn. J. Appl. Phys. 57, 066201 (2018).
  • [23] H. Suzuki et al., Appl. Phys. Express 8, 036001 (2015).
  • [24] H. Suzuki et al., Jpn. J. Appl. Phys. 55, 01AH09 (2016).
  • [25] H. Suzuki and H. Toyoda, Jpn. J. Appl. Phys. 56, 116001 (2017).
  • [26] H. Suzuki et al., Jpn. J. Appl. Phys. 59, 016002 (2020).
  • [27] K. Navaneetha Pandiyaraj et al., Vacuum 83, 332 (2009).
  • [28] C. Huang et al., Thin Solid Films 518, 3575 (2010).
  • [29] Z. Fang et al., IEEE Trans. Plasma Sci. 41, 1627 (2013).
  • [30] W.S. Kang et al., Appl. Surf. Sci. 295, 198 (2014).
  • [31] F.E. Wiria et al., J. Solid State Electrochem. 20, 1895 (2016).
  • [32] F. Rezaei et al., Surf. Coat. Technol. 309, 371 (2017).