Plasma and Fusion Research

Volume 16, 1405104 (2021)

Regular Articles


Benchmark Calculation of d-Li Thick Target Neutron Yield by JENDL/DEU-2020 for IFMIF and Similar Facilities
Takeo NISHITANI, Sachiko YOSHIHASHI, Kohki KUMAGAI1), Keitaro KONDO1) and Akira URITANI
Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
1)
National Institute for Quantum Science and Technology, Rokkasho, Aomori 039-3212, Japan
(Received 20 September 2021 / Accepted 21 October 2021 / Published 25 November 2021)

Abstract

An accelerator-based neutron source using d-Li reactions is one of the most promising neutron sources for fusion material irradiation facilities such as IFMIF, where 40 MeV deuterons bombard a liquid lithium target. The neutron yield estimation including angular neutron spectra is one of the most important issues in the design of such irradiation facilities. Recently, JAEA released deuteron nuclear data of JENDL/DEU-2020 in ACE format file for Monte Carlo codes such as MCNP, and in Frag-Data format for the PHITS code. We carry out the benchmark calculations of d-Li neutron yield by using PHITS with Frag-Data, MCNP with JENDL/DEU-2020, and MCNP/PHITS with built-in nuclear reaction models. Those calculation results are compared with experimental data. It is confirmed that PHITS with Frag Data and MCNP with JENDL/DEU-2020 reproduce well the experimental data. Those are useful for the neutron yield estimation and also the irradiation field characterization of IFMIF and similar facilities.


Keywords

neutron source, d-Li reaction, JENDL/DEU-2020, PHITS, frag data, IFMIF

DOI: 10.1585/pfr.16.1405104


References

  • [1] J. Knaster et al., Nucl. Fusion 57, 102016 (2017).
  • [2] The IFMIF/EVEDA Integrated Project Team, IFMIF: Intermediated Engineering Report (IFMIF/EVEDA Integrated Project Team, Rokkasho, Japan, 2013).
  • [3] K. Ochiai et al., Nucl. Fusion 62, 025001 (2021).
  • [4] A. Ibarra et al., Nucl. Fusion 59, 065002 (2019).
  • [5] C.L. Werner et al., MCNP6.2 Release Notes (Loa Alamos National Laboratory, Report LA-UR-18-20808, Los Alamos, NM, USA, 2018).
  • [6] T. Sato et al., J. Nucl. Sci. Technol. 55, 684 (2018).
  • [7] S.P. Simakov et al., J. Nucl. Mater. 307-311, 1710 (2002).
  • [8] S. Nakayama et al., J. Nucl. Sci. Technol. 58, 805 (2021).
  • [9] M. Herman and A. Trkov, (Ed.), ENDF-6 Formats Manual (Brookhaven National Laboratory, Report BNL-90365-2009 Rev.1, Upton, NY, USA, 2010).
  • [10] J.L. Conlin and P. Romano, A Compact ENDF (ACE) format specification (Loa Alamos National Laboratory, Report LA-UR-19-29016, Los Alamos, NM, USA, 2019).
  • [11] PHITS user's manual (Japan Atomic Energy Agency, Tokai, Japan 2021).
  • https://phits.jaea.go.jp/manual/manualJ-phits.pdf/
  • [12] R.E. MacFarlance et al., Nucl. Data Sheets 111, 2719 (2010).
  • [13] D.B. Pelowitz (Ed.), MCNPX User's Manual Version 2.7.0, (Loa Alamos National Laboratory, Report LA-CP-11-00438, Los Alamos, NM, USA, 2011).
  • [14] Y. Yariv and Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).
  • [15] A. Boudard et al., Phys. Rev. C 87, 014606 (2013).
  • [16] P. Kunz and E. Rost, Phys. Rev. C 84, 054606 (2011).
  • [17] K. Minomo, K. Washiyama and K. Ogata, J. Nucl. Sci. Technol. 54, 127 (2017).
  • [18] V.V. Zerkin and B. Pritychenko, Nucl. Instrum. Methods Phys. Res. A. 88, 31 (2018). https://www-nds.iaea.org/exfor/
  • [19] U. Fischer et al., J. Nucl. Mater. 367-370, 1531 (2007).
  • [20] M. Hagiwara et al., Fusion Sci. Technol. 48, 1320 (2005).
  • [21] M. Sugimoto et al., JAERI TANDEM, LINAC & V.D.G. Annual Report. 1990 (Japan Atomic Energy Agency, Report JAERI-M 91-170, Tokai, Japan 1991) P.137. Also available from EXFOR database https://www-nds.iaea.org/exfor/