Plasma and Fusion Research

Volume 16, 1405092 (2021)

Regular Articles


Pulse Shape Dependence of Vapor Shielding Efficiencies During Transient Heat Loads
Kenzo IBANO, Yoshio UEDA and Tomonori TAKIZUKA
Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
(Received 21 May 2021 / Accepted 16 July 2021 / Published 7 September 2021)

Abstract

Erosion of first walls in tokamak fusion reactors due to transient heat loads during ELM and disruptions is a major concern and needs to be predicted. Studies have shown that the erosion amount is strongly dependent on the total energy density and duration of a transient heat pulse. Recently, it was pointed out that the erosion amount is also dependent on the pulse shape [J.H. Yu et al., Nucl. Fusion 55, 093027 (2015), and D. Motoi et al., Fusion Eng. Des. 165, 112209 (2021)]. Meanwhile, it is predicted that the erosion during the transient heat loads can be suppressed by vapor shieldings, and the efficiency of the vapor shielding may differ between the pulse shapes. Thus, in this study, we investigate the pulse shape dependence of the vapor shielding effect by a particle-in-cell based simulation code, PIXY. Two types of square shapes and three types of triangular shapes are examined. Among the triangular shapes, it is found that the vapor shielding is effective especially in “Negative Ramp” triangular shape, where the peak heat flux comes first.


Keywords

vapor shielding, particle-in-cell simulation, transient heat load, plasma surface interaction

DOI: 10.1585/pfr.16.1405092


References

  • [1] R.A. Pitts et al., J. Nucl. Mater. 438, S48 (2013).
  • [2] R.A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019).
  • [3] K. Ibano et al., Contrib. Plasma Phys. 56, 705 (2016).
  • [4] K. Krieger et al., Nucl. Fusion 58, 026024 (2018).
  • [5] J.W. Coenen et al., Nucl. Fusion 55, 023010 (2015).
  • [6] Y. Hamaji et al., Plasma Fusion Res. 11, 2405089 (2016).
  • [7] Y. Hamaji et al., Nucl. Mater. Energy 12, 1303 (2017).
  • [8] J. Linke et al., Nucl. Fusion 51, 073017 (2011).
  • [9] N.S. Klimov et al., Nucl. Mater. Energy 12, 433 (2017).
  • [10] Y. Kikuchi et al., J. Nucl. Mater. 463, 206 (2015).
  • [11] Y. Kikuchi et al., J. Nucl. Mater. 438, S715 (2013).
  • [12] G. Pintsuk et al., Fusion Eng. Des. 82, 1720 (2007).
  • [13] J.H. Yu et al., Nucl. Fusion 55, 093027 (2015).
  • [14] D. Motoi et al., Fusion Eng. Des. 165, 112209 (2021).
  • [15] A.A. Pshenov et al., Phys. Procedia 71, 14 (2015).
  • [16] I. Sakuma et al., J. Nucl. Mater. 463, 233 (2015).
  • [17] H. Wurz et al., J. Nucl. Mater. 233, 798 (1996).
  • [18] K. Ibano et al., Nucl. Fusion 59, 076001 (2019).
  • [19] K. Ibano et al., Contrib. Plasma Phys. 58, 594 (2018).
  • [20] R.J. Hawryluk et al., Nucl. Fusion 49, 065012 (2009).
  • [21] A. Tanaka et al., Contrib. Plasma Phys. 58, 451 (2018).
  • [22] T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977).
  • [23] H.P. Summers and M.G. O'Mullane, in AIP Conference Proceedings ATOMIC AND MOLECULAR DATA AND THEIR APPLICATIONS (ICAMDATA-2010), (2011) 179-187.
  • [24] J.H. Yu et al., Nucl. Fusion 55, 093027 (2015).
  • [25] J. Coburn et al., Nucl. Mater. Energy 28, 101016 (2021).