Plasma and Fusion Research

Volume 16, 1405074 (2021)

Regular Articles


Transmutation of LLFP by Irradiation of Neutrons on Muon Catalyzed Fusion (MCF) Reactor
Norimasa YAMAMOTO, Motoyasu SATO, Hirohisa TAKANO and Atsuo IIYOSHI
Chubu University, 1200 Matsumoto-cho, Kasugai-city, Aichi 487-8501, Japan
(Received 25 August 2020 / Accepted 14 April 2021 / Published 7 June 2021)

Abstract

The objective of this article is to provide a database for the transmutation of LLFP (long-lived fission products) using neutrons of muon-catalyzed nuclear fusion (MCF). As examples of LLFP with a natural half-life of more than 105 years, four nuclides, 107Pd, 135Cs, 79Se and 93Zr, are chosen. Taking simplified geometrical models of the neutron source and blanket, which appear in the conceptual design of in-flight MCF, the nuclide production yield was calculated by a three-dimensional Monte Carlo calculation based on nuclear data. The number of neutrons and flux, which are necessary to convert half of the initial LLFP amount into a stable nucleus, are obtained. We also investigated the method of controlling two competing reactions of the nuclear fractions by fast neutrons, called the (n, 2n) reaction, and the neutron captures of the thermal neutrons. Theoretical simulation studies have revealed the quantity of LLFP that is detoxified by transmutation under the condition that the fusion neutrons are continuously irradiated to LLFP for approximately 10 years with a flux of 1019 m−2 s−1.


Keywords

muon-catalyzed nuclear fusion, LLFP, neutron, transmutation by neutron

DOI: 10.1585/pfr.16.1405074


References

  • [1] M. Shimada et al., “Progress in the ITER Physics Basis, Chapter 1: Overview and Summary”, Nucl. Fusion 47, S1 (2007).
  • [2] H. Sagara, T. Yoshida and M. Saito, Proceedings of ICONE 10, 22753 (2002).
  • [3] A. Takibayev, M. Saito, V. Artisyuk and H. Sagara, Prog. Nucl. Energy 47, 354 (2005).
  • [4] S. Chiba, T. Wakabayashi, Y. Tachi, N. Takaki, A. Terashima, S. Okumura and T. Yoshida, Scientific Reports 7, 13961 (2017).
  • [5] H. Sagara, T. Yoshida and M. Saito, Proceedings of 10th International Conference on Nuclear Engineering; 2002 April 14-18; Arlington, Virginia, USA: Nuclear Engineering Division 4, 22753 (2002).
  • [6] Y.B. Zeldovich and S.S. Gerstein, Sov. Phys. Uspekki 3, 593 (1961).
  • [7] K. Nagamine, Introductory Muon Science (Cambridge University Press, Cambridge, 2003).
  • [8] Y. Kino and M. Kamimura, Hyperfine Interact 82, 45 (1993).
  • [9] P. Froelich, A. Flores-Riveros, J. Wallenius and K. Szalewicz, Phys. Lett. A 189, 307 (1994).
  • [10] A. Iiyoshi, Y. Kino, M. Sato, Y. Tanahashi, N. Yamamoto, S. Nakatani, T. Yamashita, M. Tendler and O. Motojima, AIP Conf. Proc. 2179, 020010 (2019).
  • [11] M. Sato, Y. Kino, Y. Tanahashi, N. Yamamoto, H. Takano, T. Mutoh, A. Fujita, A. Iiyoshi and A. Matsubara, Proc. of 2018 Fall Meeting Atomic Society of Japan, Okayama, Japan, 2N03 (2018).
  • [12] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Pi-En. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver and K. Niita, J. Nucl. Sci. Technol. 55, 684 (2018).
  • [13] K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada and J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011).
  • [14] M.R. Gilbert and J-Ch. Sublet, Nucl. Fusion 51, 043005 (2011).